Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.05586
Cited By
Data augmentation in Bayesian neural networks and the cold posterior effect
10 June 2021
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data augmentation in Bayesian neural networks and the cold posterior effect"
8 / 8 papers shown
Title
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
Ba-Hien Tran
Michael Kampffmeyer
Maurizio Filippone
65
0
0
03 Jun 2024
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
21
5
0
22 Jun 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
25
28
0
17 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
72
8
0
27 May 2022
Regularising for invariance to data augmentation improves supervised learning
Aleksander Botev
Matthias Bauer
Soham De
30
14
0
07 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
24
44
0
22 Feb 2022
Improving Transformation Invariance in Contrastive Representation Learning
Adam Foster
Rattana Pukdee
Tom Rainforth
51
22
0
19 Oct 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
13
60
0
17 May 2020
1