Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.06410
Cited By
What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data
11 June 2021
Yang Hu
Adriane P. Chapman
Guihua Wen
Dame Wendy Hall
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data"
9 / 9 papers shown
Title
Subgraph-aware Few-Shot Inductive Link Prediction via Meta-Learning
Shuangjia Zheng
Sijie Mai
Ya Sun
Haifeng Hu
Yuedong Yang
30
21
0
26 Jul 2021
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
241
1,444
0
18 Mar 2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
54
89
0
06 Mar 2020
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
Tianyu Gao
Xu Han
Hao Zhu
Zhiyuan Liu
Peng Li
Maosong Sun
Jie Zhou
203
244
0
16 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
160
841
0
17 May 2016
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
31,150
0
16 Jan 2013
1