ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06410
  4. Cited By
What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot
  Learning for Structured Data

What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data

11 June 2021
Yang Hu
Adriane P. Chapman
Guihua Wen
Dame Wendy Hall
ArXivPDFHTML

Papers citing "What Can Knowledge Bring to Machine Learning? -- A Survey of Low-shot Learning for Structured Data"

9 / 9 papers shown
Title
Subgraph-aware Few-Shot Inductive Link Prediction via Meta-Learning
Subgraph-aware Few-Shot Inductive Link Prediction via Meta-Learning
Shuangjia Zheng
Sijie Mai
Ya Sun
Haifeng Hu
Yuedong Yang
30
21
0
26 Jul 2021
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
241
1,444
0
18 Mar 2020
TaskNorm: Rethinking Batch Normalization for Meta-Learning
TaskNorm: Rethinking Batch Normalization for Meta-Learning
J. Bronskill
Jonathan Gordon
James Requeima
Sebastian Nowozin
Richard E. Turner
54
89
0
06 Mar 2020
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
Tianyu Gao
Xu Han
Hao Zhu
Zhiyuan Liu
Peng Li
Maosong Sun
Jie Zhou
203
244
0
16 Oct 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
Learning Deep Representations of Fine-grained Visual Descriptions
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
160
841
0
17 May 2016
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
31,150
0
16 Jan 2013
1