ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06610
  4. Cited By
Scalars are universal: Equivariant machine learning, structured like
  classical physics

Scalars are universal: Equivariant machine learning, structured like classical physics

11 June 2021
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Scalars are universal: Equivariant machine learning, structured like classical physics"

28 / 28 papers shown
Title
Representing spherical tensors with scalar-based machine-learning models
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
30
0
0
08 May 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
75
6
0
16 Dec 2024
Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
Md Abrar Jahin
Md. Akmol Masud
Md Wahiduzzaman Suva
M. Mridha
Nilanjan Dey
44
1
0
03 Nov 2024
Improving Equivariant Model Training via Constraint Relaxation
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
30
3
0
23 Aug 2024
EqNIO: Subequivariant Neural Inertial Odometry
EqNIO: Subequivariant Neural Inertial Odometry
Royina Karegoudra Jayanth
Yinshuang Xu
Ziyun Wang
Evangelos Chatzipantazis
Daniel Gehrig
Kostas Daniilidis
22
2
0
12 Aug 2024
On the Expressive Power of Sparse Geometric MPNNs
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
40
1
0
02 Jul 2024
Building Hybrid B-Spline And Neural Network Operators
Building Hybrid B-Spline And Neural Network Operators
Raffaele Romagnoli
Jasmine Ratchford
Mark H. Klein
AI4CE
11
1
0
06 Jun 2024
Steerable Transformers
Steerable Transformers
Soumyabrata Kundu
Risi Kondor
ViT
LLMSV
22
1
0
24 May 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
20
2
0
07 Feb 2024
Any-dimensional equivariant neural networks
Any-dimensional equivariant neural networks
Eitan Levin
Mateo Díaz
13
6
0
10 Jun 2023
Fast computation of permutation equivariant layers with the partition
  algebra
Fast computation of permutation equivariant layers with the partition algebra
Charles Godfrey
Michael G. Rawson
Davis Brown
Henry Kvinge
20
6
0
10 Mar 2023
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
14
22
0
15 Nov 2022
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
10
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
12
88
0
16 Oct 2022
Hierarchical Learning in Euclidean Neural Networks
Hierarchical Learning in Euclidean Neural Networks
Joshua A. Rackers
P. Rao
15
1
0
10 Oct 2022
Exact conservation laws for neural network integrators of dynamical
  systems
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
31
12
0
23 Sep 2022
Sign and Basis Invariant Networks for Spectral Graph Representation
  Learning
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
12
138
0
25 Feb 2022
Direct Molecular Conformation Generation
Direct Molecular Conformation Generation
Jinhua Zhu
Yingce Xia
Chang-Shu Liu
Lijun Wu
Shufang Xie
...
Tao Qin
Wen-gang Zhou
Houqiang Li
Haiguang Liu
Tie-Yan Liu
9
40
0
03 Feb 2022
ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point
  Clouds
ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point Clouds
Georg Bökman
Fredrik Kahl
Axel Flinth
3DPC
11
19
0
30 Nov 2021
A simple equivariant machine learning method for dynamics based on
  scalars
A simple equivariant machine learning method for dynamics based on scalars
Weichi Yao
Kate Storey-Fisher
D. Hogg
Soledad Villar
AI4CE
27
9
0
07 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
Invariant polynomials and machine learning
Invariant polynomials and machine learning
W. Haddadin
24
7
0
26 Apr 2021
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups
A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups
Marc Finzi
Max Welling
A. Wilson
71
185
0
19 Apr 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
44
89
0
25 Feb 2021
Symmetry-adapted graph neural networks for constructing molecular
  dynamics force fields
Symmetry-adapted graph neural networks for constructing molecular dynamics force fields
Zun Wang
Chong Wang
Sibo Zhao
Shiqiao Du
Yong Xu
B. Gu
W. Duan
AI4CE
21
14
0
08 Jan 2021
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving
  Attention Networks
Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks
M. Fenton
Alexander Shmakov
Ta-Wei Ho
S. Hsu
D. Whiteson
Pierre Baldi
24
31
0
19 Oct 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
115
364
0
10 Mar 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1