Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07635
Cited By
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
14 June 2021
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Causal Networks: Approximate Bayesian Inference over Causal Structures"
34 / 34 papers shown
Title
Causal Bayesian Optimization with Unknown Graphs
Jean Durand
Yashas Annadani
Stefan Bauer
S. Parbhoo
CML
63
0
0
25 Mar 2025
Enhancing Solution Efficiency in Reinforcement Learning: Leveraging Sub-GFlowNet and Entropy Integration
Siyi He
28
0
0
01 Oct 2024
Disentangled Representations for Causal Cognition
Filippo Torresan
Manuel Baltieri
CML
35
1
0
30 Jun 2024
Challenges and Considerations in the Evaluation of Bayesian Causal Discovery
Amir Mohammad Karimi Mamaghan
P. Tigas
Karl Henrik Johansson
Yarin Gal
Yashas Annadani
Stefan Bauer
CML
42
3
0
05 Jun 2024
ProDAG: Projection-Induced Variational Inference for Directed Acyclic Graphs
Ryan Thompson
Edwin V. Bonilla
Robert Kohn
40
0
0
24 May 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
43
1
0
22 Feb 2024
Variational DAG Estimation via State Augmentation With Stochastic Permutations
Edwin V. Bonilla
P. Elinas
He Zhao
Maurizio Filippone
V. Kitsios
Terry O'Kane
CML
43
3
0
04 Feb 2024
Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes of DAGs
Moritz Schauer
Marcel Wienöbst
CML
22
2
0
09 Oct 2023
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Yoshua Bengio
Dianbo Liu
24
4
0
05 Oct 2023
BayesDAG: Gradient-Based Posterior Inference for Causal Discovery
Yashas Annadani
Nick Pawlowski
Joel Jennings
Stefan Bauer
Cheng Zhang
Wenbo Gong
CML
BDL
13
17
0
26 Jul 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
32
43
0
30 May 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
29
3
0
27 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
23
13
0
21 Feb 2023
DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets
Lazar Atanackovic
Alexander Tong
Bo Wang
Leo J. Lee
Yoshua Bengio
Jason S. Hartford
BDL
29
21
0
08 Feb 2023
Disentanglement of Latent Representations via Causal Interventions
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
CML
CoGe
18
2
0
02 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
31
45
0
01 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
19
12
0
01 Feb 2023
Trust Your
∇
\nabla
∇
: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
35
2
0
24 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDL
CML
29
29
0
04 Nov 2022
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
27
7
0
24 Oct 2022
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
43
3
0
31 Aug 2022
Latent Variable Models for Bayesian Causal Discovery
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
BDL
28
1
0
12 Jul 2022
Efficient Real-world Testing of Causal Decision Making via Bayesian Experimental Design for Contextual Optimisation
Desi R. Ivanova
Joel Jennings
Cheng Zhang
Adam Foster
CML
16
2
0
12 Jul 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
30
260
0
05 Jul 2022
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
31
8
0
09 Jun 2022
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
45
26
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
44
19
0
03 Jun 2022
Tractable Uncertainty for Structure Learning
Benjie Wang
Matthew Wicker
Marta Z. Kwiatkowska
CML
TPM
20
11
0
29 Apr 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
34
48
0
03 Mar 2022
Bayesian Structure Learning with Generative Flow Networks
T. Deleu
António Góis
Chris C. Emezue
M. Rankawat
Simon Lacoste-Julien
Stefan Bauer
Yoshua Bengio
BDL
48
143
0
28 Feb 2022
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
18
19
0
22 Oct 2021
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
43
42
0
06 Sep 2021
Causal Graph Discovery from Self and Mutually Exciting Time Series
S. Wei
Yao Xie
C. Josef
Rishikesan Kamaleswaran
CML
27
2
0
04 Jun 2021
Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions
D. Geiger
David Heckerman
117
195
0
05 May 2021
1