Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.07758
Cited By
Pitfalls of Explainable ML: An Industry Perspective
14 June 2021
Sahil Verma
Aditya Lahiri
John P. Dickerson
Su-In Lee
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pitfalls of Explainable ML: An Industry Perspective"
4 / 4 papers shown
Title
Investigating the Duality of Interpretability and Explainability in Machine Learning
Moncef Garouani
Josiane Mothe
Ayah Barhrhouj
Julien Aligon
AAML
42
2
0
27 Mar 2025
User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study
Szymon Bobek
Paloma Korycińska
Monika Krakowska
Maciej Mozolewski
Dorota Rak
Magdalena Zych
Magdalena Wójcik
Grzegorz J. Nalepa
ELM
32
1
0
21 Oct 2024
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
119
0
21 Jan 2021
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1