Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.08619
Cited By
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
16 June 2021
Alessandro Favero
Francesco Cagnetta
M. Wyart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Locality defeats the curse of dimensionality in convolutional teacher-student scenarios"
30 / 30 papers shown
Title
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
M. Wyart
26
0
0
11 May 2025
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
M. Wyart
36
0
0
11 May 2025
U-Nets as Belief Propagation: Efficient Classification, Denoising, and Diffusion in Generative Hierarchical Models
Song Mei
3DV
AI4CE
DiffM
41
11
0
29 Apr 2024
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Umberto M. Tomasini
M. Wyart
BDL
41
7
0
16 Apr 2024
A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data
Antonio Sclocchi
Alessandro Favero
M. Wyart
DiffM
41
26
0
26 Feb 2024
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
21
15
0
21 Jul 2023
Kernels, Data & Physics
Francesco Cagnetta
Deborah Oliveira
Mahalakshmi Sabanayagam
Nikolaos Tsilivis
Julia Kempe
25
0
0
05 Jul 2023
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
M. Wyart
BDL
30
22
0
05 Jul 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
42
106
0
22 May 2023
Mapping of attention mechanisms to a generalized Potts model
Riccardo Rende
Federica Gerace
A. Laio
Sebastian Goldt
15
22
0
14 Apr 2023
Short-Term Memory Convolutions
Grzegorz Stefański
Krzysztof Arendt
P. Daniluk
Bartlomiej Jasik
Artur Szumaczuk
14
4
0
08 Feb 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
11
31
0
06 Feb 2023
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
30
9
0
18 Jan 2023
A Kernel Perspective of Skip Connections in Convolutional Networks
Daniel Barzilai
Amnon Geifman
Meirav Galun
Ronen Basri
17
11
0
27 Nov 2022
On the Universal Approximation Property of Deep Fully Convolutional Neural Networks
Ting-Wei Lin
Zuowei Shen
Qianxiao Li
31
4
0
25 Nov 2022
What Can Be Learnt With Wide Convolutional Neural Networks?
Francesco Cagnetta
Alessandro Favero
M. Wyart
MLT
38
11
0
01 Aug 2022
Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm
Lechao Xiao
Jeffrey Pennington
32
10
0
11 Jul 2022
The impact of memory on learning sequence-to-sequence tasks
Alireza Seif
S. Loos
Gennaro Tucci
É. Roldán
Sebastian Goldt
23
4
0
29 May 2022
Inference of a Rumor's Source in the Independent Cascade Model
Petra Berenbrink
Max Hahn-Klimroth
Dominik Kaaser
Lena Krieg
M. Rau
LRM
11
5
0
24 May 2022
CNNs Avoid Curse of Dimensionality by Learning on Patches
Vamshi C. Madala
S. Chandrasekaran
Jason Bunk
UQCV
27
5
0
22 May 2022
On the Spectral Bias of Convolutional Neural Tangent and Gaussian Process Kernels
Amnon Geifman
Meirav Galun
David Jacobs
Ronen Basri
27
13
0
17 Mar 2022
Data-driven emergence of convolutional structure in neural networks
Alessandro Ingrosso
Sebastian Goldt
50
38
0
01 Feb 2022
Eigenspace Restructuring: a Principle of Space and Frequency in Neural Networks
Lechao Xiao
28
21
0
10 Dec 2021
Learning Curves for Continual Learning in Neural Networks: Self-Knowledge Transfer and Forgetting
Ryo Karakida
S. Akaho
CLL
24
11
0
03 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
On the Sample Complexity of Learning under Invariance and Geometric Stability
A. Bietti
Luca Venturi
Joan Bruna
27
5
0
14 Jun 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Approximation and Learning with Deep Convolutional Models: a Kernel Perspective
A. Bietti
29
29
0
19 Feb 2021
Towards Learning Convolutions from Scratch
Behnam Neyshabur
SSL
220
71
0
27 Jul 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
139
201
0
07 Feb 2020
1