Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.09352
Cited By
Large Scale Private Learning via Low-rank Reparametrization
17 June 2021
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Large Scale Private Learning via Low-rank Reparametrization"
21 / 21 papers shown
Title
NoEsis: Differentially Private Knowledge Transfer in Modular LLM Adaptation
Rob Romijnders
Stefanos Laskaridis
Ali Shahin Shamsabadi
Hamed Haddadi
64
0
0
25 Apr 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
58
0
0
29 Mar 2025
Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models
Hongbin Liu
Lun Wang
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
26
0
0
02 Oct 2024
Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation
Shiming Ge
Bochao Liu
Pengju Wang
Yong Li
Dan Zeng
FedML
39
9
0
04 Sep 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
56
5
0
10 May 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
Privacy-Preserving Prompt Tuning for Large Language Model Services
Yansong Li
Zhixing Tan
Yang Liu
SILM
VLM
45
63
0
10 May 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
24
18
0
22 Jan 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
43
11
0
08 Dec 2022
Privately Fine-Tuning Large Language Models with Differential Privacy
R. Behnia
Mohammadreza Ebrahimi
Jason L. Pacheco
B. Padmanabhan
24
44
0
26 Oct 2022
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
44
79
0
25 Oct 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
28
1
0
06 Jul 2022
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
21
5
0
01 Dec 2021
Privately Publishable Per-instance Privacy
Rachel Redberg
Yu-Xiang Wang
29
17
0
03 Nov 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
1