ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09352
  4. Cited By
Large Scale Private Learning via Low-rank Reparametrization

Large Scale Private Learning via Low-rank Reparametrization

17 June 2021
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
ArXivPDFHTML

Papers citing "Large Scale Private Learning via Low-rank Reparametrization"

21 / 21 papers shown
Title
NoEsis: Differentially Private Knowledge Transfer in Modular LLM Adaptation
NoEsis: Differentially Private Knowledge Transfer in Modular LLM Adaptation
Rob Romijnders
Stefanos Laskaridis
Ali Shahin Shamsabadi
Hamed Haddadi
64
0
0
25 Apr 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
58
0
0
29 Mar 2025
Differentially Private Parameter-Efficient Fine-tuning for Large ASR
  Models
Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models
Hongbin Liu
Lun Wang
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
26
0
0
02 Oct 2024
Learning Privacy-Preserving Student Networks via
  Discriminative-Generative Distillation
Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation
Shiming Ge
Bochao Liu
Pengju Wang
Yong Li
Dan Zeng
FedML
42
9
0
04 Sep 2024
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
DP-DyLoRA: Fine-Tuning Transformer-Based Models On-Device under Differentially Private Federated Learning using Dynamic Low-Rank Adaptation
Jie Xu
Karthikeyan P. Saravanan
Rogier van Dalen
Haaris Mehmood
David Tuckey
Mete Ozay
56
5
0
10 May 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
Differentially Private Image Classification by Learning Priors from
  Random Processes
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
Privacy-Preserving Prompt Tuning for Large Language Model Services
Privacy-Preserving Prompt Tuning for Large Language Model Services
Yansong Li
Zhixing Tan
Yang Liu
SILM
VLM
47
63
0
10 May 2023
Differentially Private Natural Language Models: Recent Advances and
  Future Directions
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
24
18
0
22 Jan 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter
  Optimization
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
43
11
0
08 Dec 2022
Privately Fine-Tuning Large Language Models with Differential Privacy
Privately Fine-Tuning Large Language Models with Differential Privacy
R. Behnia
Mohammadreza Ebrahimi
Jason L. Pacheco
B. Padmanabhan
24
44
0
26 Oct 2022
Synthetic Text Generation with Differential Privacy: A Simple and
  Practical Recipe
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
47
79
0
25 Oct 2022
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Scaling Private Deep Learning with Low-Rank and Sparse Gradients
Ryuichi Ito
Seng Pei Liew
Tsubasa Takahashi
Yuya Sasaki
Makoto Onizuka
28
1
0
06 Jul 2022
Improving Differentially Private SGD via Randomly Sparsified Gradients
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
21
5
0
01 Dec 2021
Privately Publishable Per-instance Privacy
Privately Publishable Per-instance Privacy
Rachel Redberg
Yu-Xiang Wang
29
17
0
03 Nov 2021
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
  Private Learning
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
Extracting Training Data from Large Language Models
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
141
178
0
28 Jul 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
1