ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.11810
  4. Cited By
NuPlan: A closed-loop ML-based planning benchmark for autonomous
  vehicles
v1v2v3v4 (latest)

NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles

22 June 2021
Holger Caesar
Juraj Kabzan
Kok Seang Tan
Whye Kit Fong
Eric M. Wolff
A. Lang
L. Fletcher
Oscar Beijbom
Sammy Omari
ArXiv (abs)PDFHTML

Papers citing "NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles"

5 / 255 papers shown
Title
Driving in Real Life with Inverse Reinforcement Learning
Driving in Real Life with Inverse Reinforcement Learning
Tung Phan-Minh
Forbes Howington
Ting-Sheng Chu
Sang Uk Lee
Momchil S. Tomov
...
Fráncisco Suarez-Ruiz
Robert E. Beaudoin
Bo Yang
Sammy Omari
Eric M. Wolff
OffRL
185
29
0
07 Jun 2022
Symphony: Learning Realistic and Diverse Agents for Autonomous Driving
  Simulation
Symphony: Learning Realistic and Diverse Agents for Autonomous Driving SimulationIEEE International Conference on Robotics and Automation (ICRA), 2022
Maximilian Igl
Daewoo Kim
Alex Kuefler
Paul Mougin
Punit Shah
K. Shiarlis
Drago Anguelov
Mark Palatucci
Brandyn White
Shimon Whiteson
217
77
0
06 May 2022
Importance is in your attention: agent importance prediction for
  autonomous driving
Importance is in your attention: agent importance prediction for autonomous driving
Christopher Hazard
A. Bhagat
Balarama Raju Buddharaju
Zhongtao Liu
Yunming Shao
Lu Lu
Sammy Omari
Henggang Cui
151
11
0
19 Apr 2022
TIP: Task-Informed Motion Prediction for Intelligent Vehicles
TIP: Task-Informed Motion Prediction for Intelligent Vehicles
Xin Huang
Guy Rosman
A. Jasour
Stephen G. McGill
J. Leonard
B. Williams
311
17
0
17 Oct 2021
The Reasonable Crowd: Towards evidence-based and interpretable models of
  driving behavior
The Reasonable Crowd: Towards evidence-based and interpretable models of driving behaviorIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2021
Bassam Helou
Aditya Dusi
Anne-Sophie Collin
N. Mehdipour
Zhiliang Chen
Cristhian G. Lizarazo
C. Belta
Tichakorn Wongpiromsarn
R. D. Tebbens
Oscar Beijbom
155
23
0
28 Jul 2021
Previous
123456