ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14662
  4. Cited By
Improving Uncertainty Calibration of Deep Neural Networks via Truth
  Discovery and Geometric Optimization

Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization

25 June 2021
Chunwei Ma
Ziyun Huang
Jiayi Xian
Mingchen Gao
Jinhui Xu
    UQCV
ArXivPDFHTML

Papers citing "Improving Uncertainty Calibration of Deep Neural Networks via Truth Discovery and Geometric Optimization"

12 / 12 papers shown
Title
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble
  Architecture
BEA: Revisiting anchor-based object detection DNN using Budding Ensemble Architecture
S. Qutub
Neslihan Kose
Rafael Rosales
Michael Paulitsch
Korbinian Hagn
Florian Geissler
Yang Peng
Gereon Hinz
Alois C. Knoll
11
3
0
14 Sep 2023
Uncertainty Estimation based on Geometric Separation
Uncertainty Estimation based on Geometric Separation
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
25
0
0
11 Jan 2023
Annealing Double-Head: An Architecture for Online Calibration of Deep
  Neural Networks
Annealing Double-Head: An Architecture for Online Calibration of Deep Neural Networks
Erdong Guo
D. Draper
Maria de Iorio
35
0
0
27 Dec 2022
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
  Optimization
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization
Neslihan Kose
R. Krishnan
Akash Dhamasia
Omesh Tickoo
Michael Paulitsch
27
1
0
09 Dec 2022
Promises and Pitfalls of Threshold-based Auto-labeling
Promises and Pitfalls of Threshold-based Auto-labeling
Harit Vishwakarma
Heguang Lin
Frederic Sala
Ramya Korlakai Vinayak
26
9
0
22 Nov 2022
A Consistent and Differentiable Lp Canonical Calibration Error Estimator
A Consistent and Differentiable Lp Canonical Calibration Error Estimator
Teodora Popordanoska
Raphael Sayer
Matthew B. Blaschko
UQCV
18
29
0
13 Oct 2022
Progressive Voronoi Diagram Subdivision: Towards A Holistic Geometric
  Framework for Exemplar-free Class-Incremental Learning
Progressive Voronoi Diagram Subdivision: Towards A Holistic Geometric Framework for Exemplar-free Class-Incremental Learning
Chunwei Ma
Zhanghexuan Ji
Ziyun Huang
Yan Shen
Mingchen Gao
Jinhui Xu
25
1
0
28 Jul 2022
A Geometric Method for Improved Uncertainty Estimation in Real-time
A Geometric Method for Improved Uncertainty Estimation in Real-time
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
9
0
0
23 Jun 2022
Few-shot Learning as Cluster-induced Voronoi Diagrams: A Geometric
  Approach
Few-shot Learning as Cluster-induced Voronoi Diagrams: A Geometric Approach
Chunwei Ma
Ziyun Huang
Mingchen Gao
Jinhui Xu
18
4
0
05 Feb 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
273
5,660
0
05 Dec 2016
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,216
0
16 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1