Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.16091
Cited By
Exploring the Latent Space of Autoencoders with Interventional Assays
30 June 2021
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring the Latent Space of Autoencoders with Interventional Assays"
8 / 8 papers shown
Title
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
81
0
0
28 Feb 2025
Terrain Diffusion Network: Climatic-Aware Terrain Generation with Geological Sketch Guidance
Zexin Hu
Kun Hu
Clinton Mo
Lei Pan
Zhiyong Wang
DiffM
13
2
0
31 Aug 2023
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
117
354
0
04 Oct 2021
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
53
49
0
12 Feb 2020
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
80
25
0
05 Sep 2019
Understanding Autoencoders with Information Theoretic Concepts
Shujian Yu
José C. Príncipe
AI4CE
41
132
0
30 Mar 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,809
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,230
0
24 Nov 2016
1