ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01151
18
20

Collaborative Visual Navigation

2 July 2021
Haiyang Wang
Wenguan Wang
Xizhou Zhu
Jifeng Dai
Liwei Wang
    EgoV
ArXivPDFHTML
Abstract

As a fundamental problem for Artificial Intelligence, multi-agent system (MAS) is making rapid progress, mainly driven by multi-agent reinforcement learning (MARL) techniques. However, previous MARL methods largely focused on grid-world like or game environments; MAS in visually rich environments has remained less explored. To narrow this gap and emphasize the crucial role of perception in MAS, we propose a large-scale 3D dataset, CollaVN, for multi-agent visual navigation (MAVN). In CollaVN, multiple agents are entailed to cooperatively navigate across photo-realistic environments to reach target locations. Diverse MAVN variants are explored to make our problem more general. Moreover, a memory-augmented communication framework is proposed. Each agent is equipped with a private, external memory to persistently store communication information. This allows agents to make better use of their past communication information, enabling more efficient collaboration and robust long-term planning. In our experiments, several baselines and evaluation metrics are designed. We also empirically verify the efficacy of our proposed MARL approach across different MAVN task settings.

View on arXiv
Comments on this paper