178

Scaling Gaussian Processes with Derivative Information Using Variational Inference

Neural Information Processing Systems (NeurIPS), 2021
Abstract

Gaussian processes with derivative information are useful in many settings where derivative information is available, including numerous Bayesian optimization and regression tasks that arise in the natural sciences. Incorporating derivative observations, however, comes with a dominating O(N3D3)O(N^3D^3) computational cost when training on NN points in DD input dimensions. This is intractable for even moderately sized problems. While recent work has addressed this intractability in the low-DD setting, the high-NN, high-DD setting is still unexplored and of great value, particularly as machine learning problems increasingly become high dimensional. In this paper, we introduce methods to achieve fully scalable Gaussian process regression with derivatives using variational inference. Analogous to the use of inducing values to sparsify the labels of a training set, we introduce the concept of inducing directional derivatives to sparsify the partial derivative information of a training set. This enables us to construct a variational posterior that incorporates derivative information but whose size depends neither on the full dataset size NN nor the full dimensionality DD. We demonstrate the full scalability of our approach on a variety of tasks, ranging from a high dimensional stellarator fusion regression task to training graph convolutional neural networks on Pubmed using Bayesian optimization. Surprisingly, we find that our approach can improve regression performance even in settings where only label data is available.

View on arXiv
Comments on this paper