ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04061
  4. Cited By
Scaling Gaussian Processes with Derivative Information Using Variational
  Inference

Scaling Gaussian Processes with Derivative Information Using Variational Inference

Neural Information Processing Systems (NeurIPS), 2021
8 July 2021
Misha Padidar
Xinran Zhu
Leo Huang
Jacob R. Gardner
D. Bindel
    BDL
ArXiv (abs)PDFHTML

Papers citing "Scaling Gaussian Processes with Derivative Information Using Variational Inference"

11 / 11 papers shown
Title
Scaling Gaussian Process Regression with Full Derivative Observations
Scaling Gaussian Process Regression with Full Derivative Observations
Daniel Huang
BDLGP
206
0
0
14 May 2025
Gaussian Derivative Change-point Detection for Early Warnings of
  Industrial System Failures
Gaussian Derivative Change-point Detection for Early Warnings of Industrial System FailuresReliability Engineering & System Safety (Reliab. Eng. Syst. Saf.), 2024
Hao Zhao
Rong Pan
197
6
0
29 Oct 2024
Linear cost and exponentially convergent approximation of Gaussian Matérn processes on intervals
Linear cost and exponentially convergent approximation of Gaussian Matérn processes on intervals
David Bolin
Vaibhav Mehandiratta
Alexandre B. Simas
171
1
0
16 Oct 2024
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian ProcessesNeural Information Processing Systems (NeurIPS), 2024
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
212
5
0
20 Sep 2024
FastBO: Fast HPO and NAS with Adaptive Fidelity Identification
FastBO: Fast HPO and NAS with Adaptive Fidelity Identification
Jiantong Jiang
Lin Wang
317
1
0
01 Sep 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
129
2
0
25 Feb 2024
Multi-Fidelity Methods for Optimization: A Survey
Multi-Fidelity Methods for Optimization: A Survey
Ke Li
Fan Li
AI4CE
199
13
0
15 Feb 2024
Active Learning for Abrupt Shifts Change-point Detection via
  Derivative-Aware Gaussian Processes
Active Learning for Abrupt Shifts Change-point Detection via Derivative-Aware Gaussian Processes
Hao Zhao
Rong Pan
118
2
0
05 Dec 2023
Random Function Descent
Random Function DescentNeural Information Processing Systems (NeurIPS), 2023
Felix Benning
L. Döring
152
1
0
02 May 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian
  Processes
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian ProcessesMathematics of Computation (Math. Comp.), 2023
Yifan Chen
H. Owhadi
F. Schafer
315
40
0
03 Apr 2023
Scalable First-Order Bayesian Optimization via Structured Automatic
  Differentiation
Scalable First-Order Bayesian Optimization via Structured Automatic DifferentiationInternational Conference on Machine Learning (ICML), 2022
Sebastian Ament
Daniel Schwalbe-Koda
150
11
0
16 Jun 2022
1