Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.04867
Cited By
Learning 3D Dense Correspondence via Canonical Point Autoencoder
10 July 2021
An-Chieh Cheng
Xueting Li
Min Sun
Ming-Hsuan Yang
Sifei Liu
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning 3D Dense Correspondence via Canonical Point Autoencoder"
7 / 7 papers shown
Title
Map Imagination Like Blind Humans: Group Diffusion Model for Robotic Map Generation
Qijin Song
Weibang Bai
94
1
0
22 Dec 2024
Back to 3D: Few-Shot 3D Keypoint Detection with Back-Projected 2D Features
Thomas Wimmer
Peter Wonka
M. Ovsjanikov
28
9
0
29 Nov 2023
One-Shot Transfer of Affordance Regions? AffCorrs!
Denis Hadjivelichkov
Sicelukwanda Zwane
M. Deisenroth
Lourdes Agapito
Dimitrios Kanoulas
35
34
0
15 Sep 2022
Autoregressive 3D Shape Generation via Canonical Mapping
A. Cheng
Xueting Li
Sifei Liu
Min Sun
Ming Yang
3DPC
42
39
0
05 Apr 2022
Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence
Feng Liu
Xiaoming Liu
3DPC
33
36
0
23 Oct 2020
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
115
325
0
13 Jun 2018
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
1