ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.05630
  4. Cited By
Challenges for machine learning in clinical translation of big data
  imaging studies

Challenges for machine learning in clinical translation of big data imaging studies

7 July 2021
Nicola K. Dinsdale
Emma Bluemke
V. Sundaresan
M. Jenkinson
Stephen Smith
Ana I. L. Namburete
    AI4CE
ArXivPDFHTML

Papers citing "Challenges for machine learning in clinical translation of big data imaging studies"

7 / 7 papers shown
Title
MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from
  Medical Images Using Deep Learning
MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning
Xiangde Luo
Guotai Wang
Tao Song
Jingyang Zhang
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Kamiel Magda Vercauteren
Shaoting Zhang
43
96
0
25 Apr 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
63
83
0
11 Jan 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,690
0
18 Mar 2020
TorchIO: A Python library for efficient loading, preprocessing,
  augmentation and patch-based sampling of medical images in deep learning
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
Fernando Pérez-García
Rachel Sparks
Sébastien Ourselin
MedIm
LM&MA
132
426
0
09 Mar 2020
Anatomically-Informed Data Augmentation for functional MRI with
  Applications to Deep Learning
Anatomically-Informed Data Augmentation for functional MRI with Applications to Deep Learning
K. Nguyen
Cherise R. Chin Fatt
A. Treacher
C. Mellema
M. Trivedi
A. Montillo
MedIm
16
27
0
17 Oct 2019
DeepNAT: Deep Convolutional Neural Network for Segmenting Neuroanatomy
DeepNAT: Deep Convolutional Neural Network for Segmenting Neuroanatomy
Christian Wachinger
M. Reuter
T. Klein
3DV
23
330
0
27 Feb 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1