ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.05975
  4. Cited By
Detecting when pre-trained nnU-Net models fail silently for Covid-19
  lung lesion segmentation

Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation

13 July 2021
Camila González
Karol Gotkowski
A. Bucher
Ricarda Fischbach
Isabel Kaltenborn
Anirban Mukhopadhyay
ArXivPDFHTML

Papers citing "Detecting when pre-trained nnU-Net models fail silently for Covid-19 lung lesion segmentation"

20 / 20 papers shown
Title
Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
Levente Lippenszky
István Megyeri
Krisztian Koos
Zsófia Karancsi
Borbála Deák-Karancsi
András Frontó
Árpád Makk
Attila Rádics
Erhan Bas
László Ruskó
MedIm
38
0
0
16 Apr 2025
Arctique: An artificial histopathological dataset unifying realism and
  controllability for uncertainty quantification
Arctique: An artificial histopathological dataset unifying realism and controllability for uncertainty quantification
Jannik Franzen
Claudia Winklmayr
Vanessa Emanuela Guarino
Christoph Karg
Xiaoyan Yu
Nora Koreuber
Jan P. Albrecht
Philip Bischoff
Dagmar Kainmueller
43
0
0
11 Nov 2024
Dimensionality Reduction and Nearest Neighbors for Improving
  Out-of-Distribution Detection in Medical Image Segmentation
Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation
M. Woodland
Nihil Patel
Austin Castelo
Mais Al Taie
Mohamed Eltaher
...
Nakul Gupta
David Victor
Laura Beretta
Ankit B. Patel
Kristy K. Brock
OOD
27
0
0
05 Aug 2024
Out-of-distribution Detection in Medical Image Analysis: A survey
Out-of-distribution Detection in Medical Image Analysis: A survey
Zesheng Hong
Yubiao Yue
Yubin Chen
Lele Cong
Huanjie Lin
...
Jialong Xu
Xiaoqi Yang
Hechang Chen
Zhenzhang Li
Sihong Xie
OOD
34
5
0
28 Apr 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
38
5
0
04 Mar 2024
ValUES: A Framework for Systematic Validation of Uncertainty Estimation
  in Semantic Segmentation
ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation
Kim-Celine Kahl
Carsten T. Lüth
M. Zenk
Klaus Maier-Hein
Paul F. Jaeger
UQCV
24
16
0
16 Jan 2024
Bayesian uncertainty-weighted loss for improved generalisability on
  polyp segmentation task
Bayesian uncertainty-weighted loss for improved generalisability on polyp segmentation task
Rebecca S Stone
P. E. Chavarrias-Solano
A. Bulpitt
David C. Hogg
Sharib Ali
UQCV
41
0
0
13 Sep 2023
Dimensionality Reduction for Improving Out-of-Distribution Detection in
  Medical Image Segmentation
Dimensionality Reduction for Improving Out-of-Distribution Detection in Medical Image Segmentation
M. Woodland
Nihil Patel
Mais Al Taie
J. Yung
T. Netherton
Ankit B. Patel
Kristy K. Brock
OOD
30
6
0
07 Aug 2023
Adaptive Multi-scale Online Likelihood Network for AI-assisted
  Interactive Segmentation
Adaptive Multi-scale Online Likelihood Network for AI-assisted Interactive Segmentation
Muhammad Asad
Helena Williams
Indrajeet Mandal
S. Ather
Jan Deprest
Jan D'hooge
Tom Kamiel Magda Vercauteren
38
6
0
23 Mar 2023
Efficient Bayesian Uncertainty Estimation for nnU-Net
Efficient Bayesian Uncertainty Estimation for nnU-Net
Yidong Zhao
Changchun Yang
Artur M. Schweidtmann
Qian Tao
UQCV
BDL
13
20
0
12 Dec 2022
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
26
76
0
05 Oct 2022
Distance-based detection of out-of-distribution silent failures for
  Covid-19 lung lesion segmentation
Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation
Jiamin Liang
Yuhao Huang
Haoming Li
Shuangchi He
Xindi Hu
Zejian Chen
Isabel Kaltenborn
Dong Ni
OOD
20
41
0
05 Aug 2022
Task-agnostic Continual Hippocampus Segmentation for Smooth Population
  Shifts
Task-agnostic Continual Hippocampus Segmentation for Smooth Population Shifts
Camila González
Amin Ranem
Ahmed Othman
Anirban Mukhopadhyay
OOD
13
7
0
05 Aug 2022
Improved post-hoc probability calibration for out-of-domain MRI
  segmentation
Improved post-hoc probability calibration for out-of-domain MRI segmentation
C. Ouyang
Shuo Wang
C. L. P. Chen
Zeju Li
Wenjia Bai
Bernhard Kainz
Daniel Rueckert
UQCV
MedIm
21
4
0
04 Aug 2022
Identifying and Combating Bias in Segmentation Networks by leveraging
  multiple resolutions
Identifying and Combating Bias in Segmentation Networks by leveraging multiple resolutions
Leonie Henschel
David Kügler
D. Andrews
C. Nordahl
M. Reuter
13
0
0
29 Jun 2022
A Dempster-Shafer approach to trustworthy AI with application to fetal
  brain MRI segmentation
A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Lucas Fidon
Michael Aertsen
Florian Kofler
A. Bink
A. David
...
Marlene Stuempflen
Esther Van Elslander
Sébastien Ourselin
Jan Deprest
Tom Kamiel Magda Vercauteren
21
16
0
05 Apr 2022
ECONet: Efficient Convolutional Online Likelihood Network for
  Scribble-based Interactive Segmentation
ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation
Muhammad Asad
Lucas Fidon
Tom Kamiel Magda Vercauteren
16
15
0
12 Jan 2022
Quality monitoring of federated Covid-19 lesion segmentation
Quality monitoring of federated Covid-19 lesion segmentation
Camila González
Christian Harder
Amin Ranem
Ricarda Fischbach
Isabel Kaltenborn
Armin Dadras
A. Bucher
Anirban Mukhopadhyay
OOD
16
0
0
16 Dec 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1