ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06608
  4. Cited By
Continuous vs. Discrete Optimization of Deep Neural Networks

Continuous vs. Discrete Optimization of Deep Neural Networks

14 July 2021
Omer Elkabetz
Nadav Cohen
ArXivPDFHTML

Papers citing "Continuous vs. Discrete Optimization of Deep Neural Networks"

8 / 8 papers shown
Title
The Expected Loss of Preconditioned Langevin Dynamics Reveals the
  Hessian Rank
The Expected Loss of Preconditioned Langevin Dynamics Reveals the Hessian Rank
Amitay Bar
Rotem Mulayoff
T. Michaeli
Ronen Talmon
35
0
0
21 Feb 2024
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow
  Solutions in Scalar Networks and Beyond
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Itai Kreisler
Mor Shpigel Nacson
Daniel Soudry
Y. Carmon
18
13
0
22 May 2023
On a continuous time model of gradient descent dynamics and instability
  in deep learning
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
11
6
0
03 Feb 2023
Symmetries, flat minima, and the conserved quantities of gradient flow
Symmetries, flat minima, and the conserved quantities of gradient flow
Bo-Lu Zhao
I. Ganev
Robin G. Walters
Rose Yu
Nima Dehmamy
34
16
0
31 Oct 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU
  Networks: Convergence Guarantees and Implicit Bias
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
34
23
0
18 May 2022
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
150
198
0
04 Mar 2020
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
94
1,091
0
04 Mar 2015
1