Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.06707
Cited By
Uncertainty-Guided Mixup for Semi-Supervised Domain Adaptation without Source Data
14 July 2021
Ning Ma
Jiajun Bu
Zhen Zhang
Sheng Zhou
TTA
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty-Guided Mixup for Semi-Supervised Domain Adaptation without Source Data"
6 / 6 papers shown
Title
Model Adaptation: Historical Contrastive Learning for Unsupervised Domain Adaptation without Source Data
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
126
210
0
07 Oct 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
194
501
0
15 Jan 2021
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
Jian Liang
Dapeng Hu
Yunbo Wang
R. He
Jiashi Feng
128
249
0
14 Dec 2020
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
Zhedong Zheng
Yi Yang
NoLa
164
494
0
08 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
234
11,568
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1