ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06898
  4. Cited By
Towards quantifying information flows: relative entropy in deep neural
  networks and the renormalization group

Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group

14 July 2021
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
ArXivPDFHTML

Papers citing "Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group"

3 / 3 papers shown
Title
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
45
1
0
27 May 2024
Entropic alternatives to initialization
Entropic alternatives to initialization
Daniele Musso
29
1
0
16 Jul 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
330
0
14 Jun 2018
1