Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.06898
Cited By
Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group
14 July 2021
J. Erdmenger
Kevin T. Grosvenor
R. Jefferson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards quantifying information flows: relative entropy in deep neural networks and the renormalization group"
3 / 3 papers shown
Title
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
50
1
0
27 May 2024
Entropic alternatives to initialization
Daniele Musso
29
1
0
16 Jul 2021
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
220
330
0
14 Jun 2018
1