Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2107.06917
Cited By
A Field Guide to Federated Optimization
14 July 2021
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
Blaise Agüera y Arcas
Maruan Al-Shedivat
Galen Andrew
Salman Avestimehr
Katharine Daly
Deepesh Data
Suhas Diggavi
Hubert Eichner
Advait Gadhikar
Zachary Garrett
Antonious M. Girgis
Filip Hanzely
Andrew Straiton Hard
Chaoyang He
Samuel Horváth
Zhouyuan Huo
A. Ingerman
Martin Jaggi
T. Javidi
Peter Kairouz
Satyen Kale
Sai Praneeth Karimireddy
Jakub Konecný
Sanmi Koyejo
Tian Li
Luyang Liu
M. Mohri
H. Qi
Sashank J. Reddi
Peter Richtárik
K. Singhal
Virginia Smith
Mahdi Soltanolkotabi
Weikang Song
A. Suresh
Sebastian U. Stich
Ameet Talwalkar
Hongyi Wang
Blake E. Woodworth
Shanshan Wu
Felix X. Yu
Honglin Yuan
Manzil Zaheer
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Field Guide to Federated Optimization"
50 / 294 papers shown
Title
Federated Zeroth-Order Optimization using Trajectory-Informed Surrogate Gradients
Yao Shu
Xiaoqiang Lin
Zhongxiang Dai
Bryan Kian Hsiang Low
FedML
179
8
0
08 Aug 2023
FLIPS: Federated Learning using Intelligent Participant Selection
International Middleware Conference (Middleware), 2023
R. Bhope
K.R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
202
5
0
07 Aug 2023
Scaling Survival Analysis in Healthcare with Federated Survival Forests: A Comparative Study on Heart Failure and Breast Cancer Genomics
Future generations computer systems (FGCS), 2023
Alberto Archetti
F. Ieva
Matteo Matteucci
FedML
106
13
0
04 Aug 2023
Scaff-PD: Communication Efficient Fair and Robust Federated Learning
Yaodong Yu
Sai Praneeth Karimireddy
Yi-An Ma
Michael I. Jordan
FedML
187
5
0
25 Jul 2023
FedDefender: Client-Side Attack-Tolerant Federated Learning
Knowledge Discovery and Data Mining (KDD), 2023
Sungwon Park
Sungwon Han
Fangzhao Wu
Sundong Kim
Bin Zhu
Xing Xie
Meeyoung Cha
FedML
AAML
151
28
0
18 Jul 2023
Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels
IEEE International Conference on Computer Vision (ICCV), 2023
Yae Jee Cho
Gauri Joshi
Dimitrios Dimitriadis
FedML
115
10
0
17 Jul 2023
Fairness-aware Federated Minimax Optimization with Convergence Guarantee
Conference on Algebraic Informatics (CAI), 2023
Gerry Windiarto Mohamad Dunda
Shenghui Song
FedML
185
2
0
10 Jul 2023
Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey
SIGKDD Explorations (SIGKDD Explor.), 2023
Dongqi Fu
Wenxuan Bao
Ross Maciejewski
Hanghang Tong
Jingrui He
215
15
0
10 Jul 2023
Improving Federated Aggregation with Deep Unfolding Networks
S. Nanayakkara
Mengyue Deng
Gang Li
FedML
119
0
0
30 Jun 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
International Conference on Machine Learning (ICML), 2023
Egor Shulgin
Peter Richtárik
AI4CE
268
8
0
28 Jun 2023
Synthetic data shuffling accelerates the convergence of federated learning under data heterogeneity
Yue Liu
Yasin Esfandiari
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
211
6
0
23 Jun 2023
On the Computation-Communication Trade-Off with A Flexible Gradient Tracking Approach
IEEE Conference on Decision and Control (CDC), 2023
Yan Huang
Jinming Xu
119
6
0
12 Jun 2023
Fair yet Asymptotically Equal Collaborative Learning
International Conference on Machine Learning (ICML), 2023
Xiaoqiang Lin
Xinyi Xu
See-Kiong Ng
Chuan-Sheng Foo
Bryan Kian Hsiang Low
FedML
125
12
0
09 Jun 2023
Federated Learning under Covariate Shifts with Generalization Guarantees
Ali Ramezani-Kebrya
Fanghui Liu
Thomas Pethick
Grigorios G. Chrysos
Volkan Cevher
FedML
OOD
168
12
0
08 Jun 2023
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
International Conference on Learning Representations (ICLR), 2023
Siqi Zhang
S. Choudhury
Sebastian U. Stich
Nicolas Loizou
FedML
296
8
0
08 Jun 2023
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
International Conference on Learning Representations (ICLR), 2023
Maroun Touma
Mingyue Ji
FedML
167
0
0
06 Jun 2023
Improving Accelerated Federated Learning with Compression and Importance Sampling
Michal Grudzieñ
Grigory Malinovsky
Peter Richtárik
FedML
192
11
0
05 Jun 2023
Cooperative Hardware-Prompt Learning for Snapshot Compressive Imaging
Neural Information Processing Systems (NeurIPS), 2023
Jiamian Wang
Zong-Jhe Wu
Yulun Zhang
Xin Yuan
Tao Lin
Zhiqiang Tao
FedML
287
8
0
01 Jun 2023
Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous Federated Learning
M.Yashwanth
Gaurav Kumar Nayak
Aryaveer Singh
Yogesh Singh
Anirban Chakraborty
FedML
247
1
0
31 May 2023
FedDisco: Federated Learning with Discrepancy-Aware Collaboration
International Conference on Machine Learning (ICML), 2023
Rui Ye
Mingkai Xu
Jianyu Wang
Chenxin Xu
Siheng Chen
Yanfeng Wang
FedML
175
94
0
30 May 2023
Deep Equilibrium Models Meet Federated Learning
European Signal Processing Conference (EUSIPCO), 2023
A. Gkillas
D. Ampeliotis
K. Berberidis
FedML
138
3
0
29 May 2023
Federated Learning of Gboard Language Models with Differential Privacy
Annual Meeting of the Association for Computational Linguistics (ACL), 2023
Zheng Xu
Yanxiang Zhang
Galen Andrew
Christopher A. Choquette-Choo
Peter Kairouz
H. B. McMahan
Jesse Rosenstock
Yuanbo Zhang
FedML
357
96
0
29 May 2023
FAVANO: Federated AVeraging with Asynchronous NOdes
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Louis Leconte
Van Minh Nguyen
Eric Moulines
FedML
178
3
0
25 May 2023
Federated Composite Saddle Point Optimization
Site Bai
Brian Bullins
FedML
132
0
0
25 May 2023
Federated Variational Inference: Towards Improved Personalization and Generalization
AAAI Spring Symposia (ASS), 2023
Elahe Vedadi
Joshua V. Dillon
Philip Mansfield
K. Singhal
Arash Afkanpour
Warren Morningstar
FedML
BDL
147
4
0
23 May 2023
Explicit Personalization and Local Training: Double Communication Acceleration in Federated Learning
Kai Yi
Laurent Condat
Peter Richtárik
FedML
139
5
0
22 May 2023
Can Public Large Language Models Help Private Cross-device Federated Learning?
Wei Ping
Yibo Jacky Zhang
Yuan Cao
Yue Liu
H. B. McMahan
Sewoong Oh
Zheng Xu
Manzil Zaheer
FedML
218
44
0
20 May 2023
Federated Learning over Harmonized Data Silos
Dimitris Stripelis
J. Ambite
FedML
112
2
0
15 May 2023
Understanding and Improving Model Averaging in Federated Learning on Heterogeneous Data
IEEE Transactions on Mobile Computing (IEEE TMC), 2023
Tailin Zhou
Zehong Lin
Jinchao Zhang
Danny H. K. Tsang
MoMe
FedML
309
16
0
13 May 2023
Federated Ensemble-Directed Offline Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2023
Desik Rengarajan
N. Ragothaman
D. Kalathil
S. Shakkottai
OffRL
143
1
0
04 May 2023
Cuttlefish: Low-Rank Model Training without All the Tuning
Conference on Machine Learning and Systems (MLSys), 2023
Hongyi Wang
Saurabh Agarwal
Pongsakorn U-chupala
Yoshiki Tanaka
Eric P. Xing
Dimitris Papailiopoulos
OffRL
242
26
0
04 May 2023
Hyperparameter Optimization through Neural Network Partitioning
International Conference on Learning Representations (ICLR), 2023
Bruno Mlodozeniec
M. Reisser
Christos Louizos
157
10
0
28 Apr 2023
Federated and distributed learning applications for electronic health records and structured medical data: A scoping review
Siqi Li
Pinyan Liu
G. G. Nascimento
Xinru Wang
F. Leite
...
Daniel Ting
Hamed Haddadi
M. Ong
M. A. Peres
Nan Liu
128
17
0
14 Apr 2023
TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with Adaptive Partial Training
Tuo Zhang
Lei Gao
Sunwoo Lee
Mi Zhang
Salman Avestimehr
FedML
177
41
0
14 Apr 2023
Edge-cloud Collaborative Learning with Federated and Centralized Features
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2023
Zexi Li
Qunwei Li
Yi Zhou
Wenliang Zhong
Guannan Zhang
Chao-Xiang Wu
FedML
140
19
0
12 Apr 2023
HPN: Personalized Federated Hyperparameter Optimization
Anda Cheng
Zhen Wang
Yaliang Li
Jianwei Cheng
135
1
0
11 Apr 2023
Balancing Privacy and Performance for Private Federated Learning Algorithms
Xiangjiang Hou
Sarit Khirirat
Mohammad Yaqub
Samuel Horváth
FedML
132
0
0
11 Apr 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Neural Information Processing Systems (NeurIPS), 2023
Kfir Y. Levy
Kfir Y. Levy
FedML
179
4
0
09 Apr 2023
A Communication-efficient Local Differentially Private Algorithm in Federated Optimization
IEEE Access (IEEE Access), 2023
Syed Eqbal Alam
Dhirendra Shukla
Shrisha Rao
FedML
136
2
0
04 Apr 2023
Clustered Federated Learning Architecture for Network Anomaly Detection in Large Scale Heterogeneous IoT Networks
Computers & security (Comput. Secur.), 2023
Xabier Sáez-de-Cámara
Jose Luis Flores
Cristóbal Arellano
A. Urbieta
Urko Zurutuza
196
82
0
28 Mar 2023
Federated Learning without Full Labels: A Survey
IEEE Data Engineering Bulletin (IEEE Data Eng. Bull.), 2023
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
131
32
0
25 Mar 2023
FS-Real: Towards Real-World Cross-Device Federated Learning
Knowledge Discovery and Data Mining (KDD), 2023
Daoyuan Chen
Dawei Gao
Yuexiang Xie
Xuchen Pan
Zitao Li
Yaliang Li
Bolin Ding
Jingren Zhou
200
36
0
23 Mar 2023
A Survey of Federated Learning for Connected and Automated Vehicles
Vishnu Pandi Chellapandi
Liangqi Yuan
Stanislaw H. .Zak
Ziran Wang
FedML
140
42
0
19 Mar 2023
An Empirical Evaluation of Federated Contextual Bandit Algorithms
Alekh Agarwal
H. B. McMahan
Zheng Xu
FedML
190
2
0
17 Mar 2023
Memory-adaptive Depth-wise Heterogeneous Federated Learning
Kai Zhang
Yutong Dai
Hongyi Wang
Eric P. Xing
Hang Zhang
Lichao Sun
FedML
109
11
0
08 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Journal of Artificial Intelligence Research (JAIR), 2023
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
365
223
0
01 Mar 2023
Advancements in Federated Learning: Models, Methods, and Privacy
ACM Computing Surveys (ACM Comput. Surv.), 2023
Hui Chen
Huandong Wang
Qingyue Long
Depeng Jin
Yong Li
FedML
236
24
0
22 Feb 2023
Federated Gradient Matching Pursuit
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Halyun Jeong
Deanna Needell
Jing Qin
FedML
124
1
0
20 Feb 2023
TAMUNA: Doubly Accelerated Distributed Optimization with Local Training, Compression, and Partial Participation
Laurent Condat
Ivan Agarský
Grigory Malinovsky
Peter Richtárik
FedML
236
3
0
20 Feb 2023
Revisiting Weighted Aggregation in Federated Learning with Neural Networks
International Conference on Machine Learning (ICML), 2023
Zexi Li
Tao Lin
Xinyi Shang
Chao-Xiang Wu
FedML
227
92
0
14 Feb 2023
Previous
1
2
3
4
5
6
Next