ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.08924
  4. Cited By
Epistemic Neural Networks

Epistemic Neural Networks

19 July 2021
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Epistemic Neural Networks"

25 / 25 papers shown
Title
Uncertainty modeling for fine-tuned implicit functions
Uncertainty modeling for fine-tuned implicit functions
A. Susmelj
Mael Macuglia
Nataša Tagasovska
Reto Sutter
Sebastiano Caprara
Jean-Philippe Thiran
E. Konukoglu
70
1
0
17 Jun 2024
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
Distinguishing the Knowable from the Unknowable with Language Models
Distinguishing the Knowable from the Unknowable with Language Models
Gustaf Ahdritz
Tian Qin
Nikhil Vyas
Boaz Barak
Benjamin L. Edelman
26
18
0
05 Feb 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice
  via HyperAgent
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
26
6
0
05 Feb 2024
Reducing LLM Hallucinations using Epistemic Neural Networks
Reducing LLM Hallucinations using Epistemic Neural Networks
Shreyas Verma
Kien Tran
Yusuf Ali
Guangyu Min
38
7
0
25 Dec 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden
  Confounding
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Semantic Anomaly Detection with Large Language Models
Semantic Anomaly Detection with Large Language Models
Amine Elhafsi
Rohan Sinha
Christopher Agia
Edward Schmerling
I. Nesnas
Marco Pavone
34
64
0
18 May 2023
Variational Voxel Pseudo Image Tracking
Variational Voxel Pseudo Image Tracking
Illia Oleksiienko
Paraskevi Nousi
Nikolaos Passalis
Anastasios Tefas
Alexandros Iosifidis
19
1
0
12 Feb 2023
Selective Uncertainty Propagation in Offline RL
Selective Uncertainty Propagation in Offline RL
Sanath Kumar Krishnamurthy
Shrey Modi
Tanmay Gangwani
S. Katariya
B. Kveton
A. Rangi
OffRL
59
0
0
01 Feb 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
18
52
0
11 Nov 2022
Reinforcement Learning in Non-Markovian Environments
Reinforcement Learning in Non-Markovian Environments
Siddharth Chandak
Pratik Shah
Vivek Borkar
Parth Dodhia
OOD
20
7
0
03 Nov 2022
Truncation Sampling as Language Model Desmoothing
Truncation Sampling as Language Model Desmoothing
John Hewitt
Christopher D. Manning
Percy Liang
BDL
41
75
0
27 Oct 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and
  Bootstrapping
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
24
17
0
08 Jun 2022
Incorporating Explicit Uncertainty Estimates into Deep Offline
  Reinforcement Learning
Incorporating Explicit Uncertainty Estimates into Deep Offline Reinforcement Learning
David Brandfonbrener
Rémi Tachet des Combes
Romain Laroche
OffRL
29
5
0
02 Jun 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian
  Inference, Active Learning, and Active Sampling
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCV
BDL
50
3
0
18 May 2022
Evaluating High-Order Predictive Distributions in Deep Learning
Evaluating High-Order Predictive Distributions in Deep Learning
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Xiuyuan Lu
Benjamin Van Roy
10
9
0
28 Feb 2022
Deep Ensembles Work, But Are They Necessary?
Deep Ensembles Work, But Are They Necessary?
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
38
59
0
14 Feb 2022
Learning to Be Cautious
Learning to Be Cautious
Montaser Mohammedalamen
Dustin Morrill
Alexander Sieusahai
Yash Satsangi
Michael H. Bowling
18
3
0
29 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
26
21
0
09 Oct 2021
Deep Exploration for Recommendation Systems
Deep Exploration for Recommendation Systems
Zheqing Zhu
Benjamin Van Roy
32
11
0
26 Sep 2021
Correlated Input-Dependent Label Noise in Large-Scale Image
  Classification
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Mark Collier
Basil Mustafa
Efi Kokiopoulou
Rodolphe Jenatton
Jesse Berent
NoLa
178
53
0
19 May 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
231
4,469
0
23 Jan 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1