Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.09133
Cited By
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
19 July 2021
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion"
13 / 13 papers shown
Title
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
32
0
0
23 Nov 2023
Correlated Noise in Epoch-Based Stochastic Gradient Descent: Implications for Weight Variances
Marcel Kühn
B. Rosenow
11
3
0
08 Jun 2023
Stochastic Collapse: How Gradient Noise Attracts SGD Dynamics Towards Simpler Subnetworks
F. Chen
D. Kunin
Atsushi Yamamura
Surya Ganguli
21
26
0
07 Jun 2023
Machine learning in and out of equilibrium
Shishir Adhikari
Alkan Kabakcciouglu
A. Strang
Deniz Yuret
M. Hinczewski
14
4
0
06 Jun 2023
Identifying Equivalent Training Dynamics
William T. Redman
J. M. Bello-Rivas
M. Fonoberova
Ryan Mohr
Ioannis G. Kevrekidis
Igor Mezić
27
2
0
17 Feb 2023
Flatter, faster: scaling momentum for optimal speedup of SGD
Aditya Cowsik
T. Can
Paolo Glorioso
52
5
0
28 Oct 2022
Beyond the Quadratic Approximation: the Multiscale Structure of Neural Network Loss Landscapes
Chao Ma
D. Kunin
Lei Wu
Lexing Ying
25
27
0
24 Apr 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization
G. Luca
E. Silverstein
38
10
0
26 Jan 2022
Neural Network Weights Do Not Converge to Stationary Points: An Invariant Measure Perspective
J. Zhang
Haochuan Li
S. Sra
Ali Jadbabaie
66
9
0
12 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
81
72
0
29 Sep 2021
Revisiting the Characteristics of Stochastic Gradient Noise and Dynamics
Yixin Wu
Rui Luo
Chen Zhang
Jun Wang
Yaodong Yang
43
7
0
20 Sep 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
99
77
0
08 Dec 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
1