ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10066
  4. Cited By
Adaptive Inducing Points Selection For Gaussian Processes

Adaptive Inducing Points Selection For Gaussian Processes

21 July 2021
Théo Galy-Fajou
Manfred Opper
ArXivPDFHTML

Papers citing "Adaptive Inducing Points Selection For Gaussian Processes"

8 / 8 papers shown
Title
Approximation-Aware Bayesian Optimization
Approximation-Aware Bayesian Optimization
Natalie Maus
Kyurae Kim
Geoff Pleiss
David Eriksson
John P. Cunningham
Jacob R. Gardner
41
2
0
06 Jun 2024
Real-Time Line-Based Room Segmentation and Continuous Euclidean Distance
  Fields
Real-Time Line-Based Room Segmentation and Continuous Euclidean Distance Fields
Erik Warberg
Adam Miksits
Fernando S. Barbosa
3DV
28
0
0
07 Feb 2024
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
William Bankes
George Hughes
Ilija Bogunovic
Zi Wang
34
3
0
01 Dec 2023
Latent Graph Inference using Product Manifolds
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio
BDL
45
19
0
26 Nov 2022
Numerically Stable Sparse Gaussian Processes via Minimum Separation
  using Cover Trees
Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees
Alexander Terenin
David R. Burt
A. Artemev
Seth Flaxman
Mark van der Wilk
C. Rasmussen
Hong Ge
58
7
0
14 Oct 2022
Fully-probabilistic Terrain Modelling with Stochastic Variational
  Gaussian Process Maps
Fully-probabilistic Terrain Modelling with Stochastic Variational Gaussian Process Maps
Ignacio Torroba
Christopher Iliffe Sprague
John Folkesson
16
1
0
21 Mar 2022
Recipes for when Physics Fails: Recovering Robust Learning of Physics
  Informed Neural Networks
Recipes for when Physics Fails: Recovering Robust Learning of Physics Informed Neural Networks
Minh Nguyen
Luke McLennan
T. Andeen
Avik Roy
PINN
28
27
0
26 Oct 2021
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
176
1,125
0
25 Jul 2012
1