ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10234
  4. Cited By
Bridging the Gap between Spatial and Spectral Domains: A Unified
  Framework for Graph Neural Networks

Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks

21 July 2021
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
ArXivPDFHTML

Papers citing "Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks"

15 / 15 papers shown
Title
From ChebNet to ChebGibbsNet
From ChebNet to ChebGibbsNet
Jie M. Zhang
Min-Te Sun
GNN
69
1
0
02 Dec 2024
Specformer: Spectral Graph Neural Networks Meet Transformers
Specformer: Spectral Graph Neural Networks Meet Transformers
Deyu Bo
Chuan Shi
Lele Wang
Renjie Liao
69
74
0
02 Mar 2023
How Powerful are Spectral Graph Neural Networks
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
70
175
0
23 May 2022
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
  Analysis
Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis
Maciej Besta
Torsten Hoefler
GNN
32
54
0
19 May 2022
mGNN: Generalizing the Graph Neural Networks to the Multilayer Case
mGNN: Generalizing the Graph Neural Networks to the Multilayer Case
Marco Grassia
Manlio De Domenico
G. Mangioni
AI4CE
36
10
0
21 Sep 2021
What are higher-order networks?
What are higher-order networks?
C. Bick
Elizabeth Gross
Heather A. Harrington
Michael T. Schaub
106
273
0
20 Apr 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
87
554
0
04 Jan 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
162
589
0
31 Dec 2020
A Survey on Knowledge Graphs: Representation, Acquisition and
  Applications
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Shaoxiong Ji
Shirui Pan
Erik Cambria
Pekka Marttinen
Philip S. Yu
169
1,877
0
02 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,724
0
26 Sep 2016
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
214
7,687
0
17 Aug 2015
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
29,632
0
16 Jan 2013
1