ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10483
  4. Cited By
Efficient Neural Causal Discovery without Acyclicity Constraints
v1v2v3 (latest)

Efficient Neural Causal Discovery without Acyclicity Constraints

22 July 2021
Phillip Lippe
Taco S. Cohen
E. Gavves
    CML
ArXiv (abs)PDFHTML

Papers citing "Efficient Neural Causal Discovery without Acyclicity Constraints"

50 / 54 papers shown
Title
Can Large Language Models Help Experimental Design for Causal Discovery?
Junyi Li
Yongqiang Chen
Chenxi Liu
Qianyi Cai
Tongliang Liu
Bo Han
Kun Zhang
Hui Xiong
CML
93
2
0
03 Mar 2025
IGDA: Interactive Graph Discovery through Large Language Model Agents
IGDA: Interactive Graph Discovery through Large Language Model Agents
Alex Havrilla
David Alvarez-Melis
Nicolò Fusi
AI4CE
123
0
0
24 Feb 2025
Since Faithfulness Fails: The Performance Limits of Neural Causal Discovery
Mateusz Olko
Mateusz Gajewski
Joanna Wojciechowska
Mikołaj Morzy
Piotr Sankowski
Piotr Miłoś
CML
102
0
0
22 Feb 2025
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning
Jiaru Zhang
Rui Ding
Qiang Fu
Bojun Huang
Zizhen Deng
Yang Hua
Haibing Guan
Shi Han
Dongmei Zhang
CML
77
0
0
15 Feb 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
157
0
0
28 Jan 2025
LLM4GRN: Discovering Causal Gene Regulatory Networks with LLMs --
  Evaluation through Synthetic Data Generation
LLM4GRN: Discovering Causal Gene Regulatory Networks with LLMs -- Evaluation through Synthetic Data Generation
Tejumade Afonja
Ivaxi Sheth
Ruta Binkyte
Waqar Hanif
Thomas Ulas
Matthias Becker
Mario Fritz
113
3
0
21 Oct 2024
LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery
Sujai Hiremath
Promit Ghosal
Kyra Gan
CML
34
0
0
15 Oct 2024
Amortized Inference of Causal Models via Conditional Fixed-Point Iterations
Amortized Inference of Causal Models via Conditional Fixed-Point Iterations
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
123
2
0
08 Oct 2024
CAnDOIT: Causal Discovery with Observational and Interventional Data
  from Time-Series
CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series
Luca Castri
Sariah Mghames
Marc Hanheide
Nicola Bellotto
CML
68
1
0
03 Oct 2024
Efficient Identification of Direct Causal Parents via Invariance and
  Minimum Error Testing
Efficient Identification of Direct Causal Parents via Invariance and Minimum Error Testing
Minh Le Nguyen
Mert R. Sabuncu
54
1
0
19 Sep 2024
Adapting to Shifting Correlations with Unlabeled Data Calibration
Adapting to Shifting Correlations with Unlabeled Data Calibration
Minh Le Nguyen
Alan Q. Wang
Heejong Kim
Mert R. Sabuncu
OOD
64
1
0
09 Sep 2024
Causal Discovery from Time-Series Data with Short-Term Invariance-Based
  Convolutional Neural Networks
Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
Rujia Shen
Boran Wang
Chao Zhao
Yi Guan
Jingchi Jiang
CMLBDLAI4TS
82
0
0
15 Aug 2024
Interventional Causal Structure Discovery over Graphical Models with
  Convergence and Optimality Guarantees
Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees
Qiu Chengbo
Yang Kai
CML
85
0
0
09 Aug 2024
Score matching through the roof: linear, nonlinear, and latent variables causal discovery
Score matching through the roof: linear, nonlinear, and latent variables causal discovery
Francesco Montagna
P. M. Faller
Patrick Bloebaum
Elke Kirschbaum
Francesco Locatello
CML
153
1
0
26 Jul 2024
Simulation-based Benchmarking for Causal Structure Learning in Gene
  Perturbation Experiments
Simulation-based Benchmarking for Causal Structure Learning in Gene Perturbation Experiments
Luka Kovacevic
Izzy Newsham
Sach Mukherjee
John Whittaker
CML
52
2
0
08 Jul 2024
PORCA: Root Cause Analysis with Partially Observed Data
PORCA: Root Cause Analysis with Partially Observed Data
Chang Gong
Di Yao
Jin Wang
Wenbin Li
Lanting Fang
Yongtao Xie
Kaiyu Feng
Peng Han
Jingping Bi
102
4
0
08 Jul 2024
Enabling Causal Discovery in Post-Nonlinear Models with Normalizing
  Flows
Enabling Causal Discovery in Post-Nonlinear Models with Normalizing Flows
Nu Hoang
Bao Duong
Thin Nguyen
75
0
0
06 Jul 2024
Knockout: A simple way to handle missing inputs
Knockout: A simple way to handle missing inputs
Minh Nguyen
Batuhan K. Karaman
Heejong Kim
Alan Q. Wang
Fengbei Liu
M. Sabuncu
OODUQCV
73
2
0
30 May 2024
Demystifying amortized causal discovery with transformers
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
122
1
0
27 May 2024
Predictive, scalable and interpretable knowledge tracing on structured
  domains
Predictive, scalable and interpretable knowledge tracing on structured domains
Hanqi Zhou
Robert Bamler
Charley M. Wu
Álvaro Tejero-Cantero
AI4Ed
65
10
0
19 Mar 2024
Federated Causal Discovery from Heterogeneous Data
Federated Causal Discovery from Heterogeneous Data
Loka Li
Ignavier Ng
Gongxu Luo
Erdun Gao
Guan-Hong Chen
Tongliang Liu
Bin Gu
Kun Zhang
FedML
91
5
0
20 Feb 2024
Implicit Causal Representation Learning via Switchable Mechanisms
Implicit Causal Representation Learning via Switchable Mechanisms
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
CML
142
0
0
16 Feb 2024
Variational DAG Estimation via State Augmentation With Stochastic
  Permutations
Variational DAG Estimation via State Augmentation With Stochastic Permutations
Edwin V. Bonilla
P. Elinas
He Zhao
Maurizio Filippone
V. Kitsios
Terry O'Kane
CML
82
4
0
04 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
131
7
0
02 Feb 2024
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement
  Learning
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning
Andreas Sauter
N. Botteghi
Erman Acar
Aske Plaat
CML
75
4
0
30 Jan 2024
Stable Differentiable Causal Discovery
Stable Differentiable Causal Discovery
Achille Nazaret
Justin Hong
Elham Azizi
David M. Blei
CML
104
10
0
17 Nov 2023
Diffusion Based Causal Representation Learning
Diffusion Based Causal Representation Learning
Amir Mohammad Karimi Mamaghan
Andrea Dittadi
Stefan Bauer
Karl Henrik Johansson
Francesco Quinzan
CMLDiffM
88
0
0
09 Nov 2023
Shortcuts for causal discovery of nonlinear models by score matching
Shortcuts for causal discovery of nonlinear models by score matching
Francesco Montagna
Nicoletta Noceti
Lorenzo Rosasco
Francesco Locatello
CML
81
3
0
22 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual
  Generation: A Survey on Causal Generative Modeling
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CMLOOD
113
11
0
17 Oct 2023
CoLiDE: Concomitant Linear DAG Estimation
CoLiDE: Concomitant Linear DAG Estimation
S. S. Saboksayr
Gonzalo Mateos
Mariano Tepper
CML
77
5
0
04 Oct 2023
CausalTime: Realistically Generated Time-series for Benchmarking of
  Causal Discovery
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TSCML
91
17
0
03 Oct 2023
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Riccardo Massidda
Francesco Landolfi
Martina Cinquini
Davide Bacciu
78
6
0
15 Sep 2023
BISCUIT: Causal Representation Learning from Binary Interactions
BISCUIT: Causal Representation Learning from Binary Interactions
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
77
31
0
16 Jun 2023
Discovering Dynamic Causal Space for DAG Structure Learning
Discovering Dynamic Causal Space for DAG Structure Learning
Fan Liu
Wenchang Ma
An Zhang
Xiang Wang
Yueqi Duan
Tat-Seng Chua
OODCML
39
2
0
05 Jun 2023
DiscoGen: Learning to Discover Gene Regulatory Networks
DiscoGen: Learning to Discover Gene Regulatory Networks
Nan Rosemary Ke
Sara-Jane Dunn
J. Bornschein
Silvia Chiappa
Mélanie Rey
...
David Barrett
M. Botvinick
Anirudh Goyal
Michael C. Mozer
Danilo Jimenez Rezende
BDLCML
48
5
0
12 Apr 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CMLAI4TS
123
31
0
27 Mar 2023
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG
  Learning
Causal Reasoning in the Presence of Latent Confounders via Neural ADMG Learning
Matthew Ashman
Chao Ma
Agrin Hilmkil
Joel Jennings
Cheng Zhang
CMLAI4CE
93
10
0
22 Mar 2023
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting
An Zhang
Fang Liu
Wenchang Ma
Zhibo Cai
Xiang Wang
Tat-Seng Chua
CML
82
5
0
06 Mar 2023
CUTS: Neural Causal Discovery from Irregular Time-Series Data
CUTS: Neural Causal Discovery from Irregular Time-Series Data
Yuxiao Cheng
Runzhao Yang
Tingxiong Xiao
Zongren Li
J. Suo
K. He
Qionghai Dai
OODBDLAI4TSCML
73
28
0
15 Feb 2023
DAG Learning on the Permutahedron
DAG Learning on the Permutahedron
Valentina Zantedeschi
Luca Franceschi
Jean Kaddour
Matt J. Kusner
Vlad Niculae
86
11
0
27 Jan 2023
Deep Learning of Causal Structures in High Dimensions
Deep Learning of Causal Structures in High Dimensions
Kai Lagemann
C. Lagemann
B. Taschler
S. Mukherjee
CMLBDLAI4CE
59
30
0
09 Dec 2022
Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal
  Discovery
Trust Your ∇\nabla∇: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
125
2
0
24 Nov 2022
Federated Causal Discovery From Interventions
Federated Causal Discovery From Interventions
Amin Abyaneh
Nino Scherrer
Patrick Schwab
Stefan Bauer
Bernhard Schölkopf
Arash Mehrjou
FedML
43
0
0
07 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CMLBDL
119
11
0
07 Nov 2022
A Meta-Reinforcement Learning Algorithm for Causal Discovery
A Meta-Reinforcement Learning Algorithm for Causal Discovery
Andreas Sauter
Erman Acar
Vincent François-Lavet
CML
106
19
0
18 Jul 2022
Variational Causal Dynamics: Discovering Modular World Models from
  Interventions
Variational Causal Dynamics: Discovering Modular World Models from Interventions
Anson Lei
Bernhard Schölkopf
Ingmar Posner
CML
57
9
0
22 Jun 2022
Large-Scale Differentiable Causal Discovery of Factor Graphs
Large-Scale Differentiable Causal Discovery of Factor Graphs
Romain Lopez
Jan-Christian Hütter
J. Pritchard
Aviv Regev
CMLAI4CE
87
43
0
15 Jun 2022
Causal Representation Learning for Instantaneous and Temporal Effects in
  Interactive Systems
Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
67
31
0
13 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CMLOODBDLTTA
80
8
0
09 Jun 2022
Active Bayesian Causal Inference
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
83
27
0
04 Jun 2022
12
Next