Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.10991
Cited By
A novel meta-learning initialization method for physics-informed neural networks
23 July 2021
Xu Liu
Xiaoya Zhang
Wei Peng
Weien Zhou
W. Yao
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A novel meta-learning initialization method for physics-informed neural networks"
8 / 8 papers shown
Title
Challenges and opportunities for machine learning in multiscale computational modeling
Phong C. H. Nguyen
Joseph B. Choi
H. Udaykumar
Stephen Seung-Yeob Baek
AI4CE
16
8
0
22 Mar 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
26
18
0
13 Mar 2023
Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
I. Chuprov
D. Efremenko
Jiexing Gao
P. Anisimov
V. Zemlyakov
9
0
0
29 Sep 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning
Rafael Bischof
M. Kraus
PINN
AI4CE
14
88
0
19 Oct 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
271
0
20 Apr 2021
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
666
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1