Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.11136
Cited By
v1
v2 (latest)
High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data
23 July 2021
Lijie Hu
Shuo Ni
Hanshen Xiao
Di Wang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"High Dimensional Differentially Private Stochastic Optimization with Heavy-tailed Data"
36 / 36 papers shown
Title
Differentially Private Sparse Linear Regression with Heavy-tailed Responses
Xizhi Tian
Meng Ding
Touming Tao
Zihang Xiang
Di Wang
18
0
0
07 Jun 2025
Second-Order Convergence in Private Stochastic Non-Convex Optimization
Youming Tao
Zuyuan Zhang
Dongxiao Yu
Xiuzhen Cheng
Falko Dressler
Di Wang
59
1
0
21 May 2025
Towards User-level Private Reinforcement Learning with Human Feedback
Jing Zhang
Mingxi Lei
Meng Ding
Mengdi Li
Zihang Xiang
Difei Xu
Jinhui Xu
Di Wang
107
3
0
22 Feb 2025
Private Language Models via Truncated Laplacian Mechanism
Tianhao Huang
Tao Yang
Ivan Habernal
Lijie Hu
Di Wang
54
1
0
10 Oct 2024
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Xiaogang Xu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
72
1
0
19 Aug 2024
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
85
1
0
08 Aug 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
123
5
0
28 May 2024
Leveraging Logical Rules in Knowledge Editing: A Cherry on the Top
Keyuan Cheng
Muhammad Asif Ali
Shu Yang
Gang Lin
Yuxuan Zhai
Haoyang Fei
Ke Xu
Lu Yu
Lijie Hu
Di Wang
KELM
117
11
0
24 May 2024
SoK: A Review of Differentially Private Linear Models For High-Dimensional Data
Amol Khanna
Edward Raff
Nathan Inkawhich
72
4
0
01 Apr 2024
Multi-hop Question Answering under Temporal Knowledge Editing
Keyuan Cheng
Gang Lin
Haoyang Fei
Yuxuan Zhai
Lu Yu
Muhammad Asif Ali
Lijie Hu
Di Wang
KELM
100
27
0
30 Mar 2024
PROMPT-SAW: Leveraging Relation-Aware Graphs for Textual Prompt Compression
Muhammad Asif Ali
Zhengping Li
Shu Yang
Keyuan Cheng
Yang Cao
Tianhao Huang
Lijie Hu
Lu Yu
Di Wang
VLM
RALM
83
9
0
30 Mar 2024
Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs
Shu Yang
Jiayuan Su
Han Jiang
Mengdi Li
Keyuan Cheng
Muhammad Asif Ali
Lijie Hu
Di Wang
95
6
0
30 Mar 2024
SPriFed-OMP: A Differentially Private Federated Learning Algorithm for Sparse Basis Recovery
Ajinkya Kiran Mulay
Xiaojun Lin
49
0
0
29 Feb 2024
MONAL: Model Autophagy Analysis for Modeling Human-AI Interactions
Shu Yang
Muhammad Asif Ali
Lu Yu
Lijie Hu
Di Wang
LLMAG
72
5
0
17 Feb 2024
Efficient Sparse Least Absolute Deviation Regression with Differential Privacy
Weidong Liu
Xiaojun Mao
Xiaofei Zhang
Xin Zhang
55
2
0
02 Jan 2024
Scaling Up Differentially Private LASSO Regularized Logistic Regression via Faster Frank-Wolfe Iterations
Edward Raff
Amol Khanna
Fred Lu
60
7
0
30 Oct 2023
Differentially Private Non-convex Learning for Multi-layer Neural Networks
Hanpu Shen
Cheng-Long Wang
Zihang Xiang
Yiming Ying
Di Wang
81
8
0
12 Oct 2023
Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model
Liyang Zhu
Meng Ding
Vaneet Aggarwal
Jinhui Xu
Di Wang
40
5
0
11 Oct 2023
Geometry of Sensitivity: Twice Sampling and Hybrid Clipping in Differential Privacy with Optimal Gaussian Noise and Application to Deep Learning
Hanshen Xiao
Jun Wan
Srini Devadas
33
8
0
06 Sep 2023
Differentially Private Episodic Reinforcement Learning with Heavy-tailed Rewards
Yulian Wu
Xingyu Zhou
Sayak Ray Chowdhury
Di Wang
60
2
0
01 Jun 2023
DPFormer: Learning Differentially Private Transformer on Long-Tailed Data
Youlong Ding
Xueyang Wu
Hongya Wang
Weike Pan
95
1
0
28 May 2023
Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited
Jinyan Su
Changhong Zhao
Di Wang
60
5
0
31 Mar 2023
Byzantine-Resilient Federated Learning at Edge
Youming Tao
Sijia Cui
Wenlu Xu
Haofei Yin
Dongxiao Yu
W. Liang
Xiuzhen Cheng
FedML
48
19
0
18 Mar 2023
DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning
Tomoya Murata
Taiji Suzuki
83
9
0
08 Feb 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
87
19
0
22 Jan 2023
Differentially Private Deep Learning with ModelMix
Hanshen Xiao
Jun Wan
S. Devadas
70
3
0
07 Oct 2022
Truthful Generalized Linear Models
Yuan Qiu
Jinyan Liu
Di Wang
FedML
78
2
0
16 Sep 2022
Private Stochastic Optimization With Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses
Andrew Lowy
Meisam Razaviyayn
86
13
0
15 Sep 2022
High-Dimensional Private Empirical Risk Minimization by Greedy Coordinate Descent
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
68
5
0
04 Jul 2022
Efficient Private SCO for Heavy-Tailed Data via Clipping
Chenhan Jin
Kaiwen Zhou
Bo Han
Ming Yang
James Cheng
44
1
0
27 Jun 2022
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
94
19
0
21 Jun 2022
On Private Online Convex Optimization: Optimal Algorithms in
ℓ
p
\ell_p
ℓ
p
-Geometry and High Dimensional Contextual Bandits
Yuxuan Han
Zhicong Liang
Zhipeng Liang
Yang Wang
Yuan Yao
Jiheng Zhang
58
1
0
16 Jun 2022
DP-PCA: Statistically Optimal and Differentially Private PCA
Xiyang Liu
Weihao Kong
Prateek Jain
Sewoong Oh
127
24
0
27 May 2022
High Dimensional Statistical Estimation under Uniformly Dithered One-bit Quantization
Junren Chen
Cheng-Long Wang
Michael Kwok-Po Ng
Di Wang
MQ
98
20
0
26 Feb 2022
Differentially Private
ℓ
1
\ell_1
ℓ
1
-norm Linear Regression with Heavy-tailed Data
Di Wang
Jinhui Xu
42
7
0
10 Jan 2022
Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data
Di Wang
Lijie Hu
Huanyu Zhang
Marco Gaboardi
Jinhui Xu
127
9
0
01 Oct 2019
1