Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.12045
Cited By
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
26 July 2021
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review"
15 / 15 papers shown
Title
CoCoAFusE: Beyond Mixtures of Experts via Model Fusion
Aurelio Raffa Ugolini
M. Tanelli
Valentina Breschi
MoE
24
0
0
02 May 2025
Synergistic Perception and Control Simplex for Verifiable Safe Vertical Landing
Ayoosh Bansal
Yang Zhao
James Zhu
Sheng Cheng
Yuliang Gu
Hyung-Jin Yoon
Hunmin Kim
N. Hovakimyan
Lui Sha
13
2
0
05 Dec 2023
Memory Efficient Neural Processes via Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
25
5
0
23 May 2023
Optimality Principles in Spacecraft Neural Guidance and Control
Dario Izzo
E. Blazquez
Robin Ferede
Sebastien Origer
C. De Wagter
Guido de Croon
24
8
0
22 May 2023
DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep Neural Networks
Zohreh Aghababaeyan
Manel Abdellatif
Mahboubeh Dadkhah
Lionel C. Briand
AAML
28
15
0
08 Mar 2023
Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection Faults
Ayoosh Bansal
Hunmin Kim
Simon Yu
Bo-wen Li
N. Hovakimyan
Marco Caccamo
L. Sha
AAML
26
4
0
04 Sep 2022
Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System
Markus Borg
Jens Henriksson
Kasper Socha
Olof Lennartsson
Elias Sonnsjo Lonegren
T. Bui
Piotr Tomaszewski
S. Sathyamoorthy
Sebastian Brink
M. H. Moghadam
22
23
0
16 Apr 2022
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
273
0
28 Sep 2021
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Analyzing the Noise Robustness of Deep Neural Networks
Kelei Cao
Mengchen Liu
Hang Su
Jing Wu
Jun Zhu
Shixia Liu
AAML
52
89
0
26 Jan 2020
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
80
1,231
0
30 Nov 2018
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
42
87
0
02 Oct 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
932
0
21 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1