ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.14206
  4. Cited By
Using Visual Anomaly Detection for Task Execution Monitoring
v1v2 (latest)

Using Visual Anomaly Detection for Task Execution Monitoring

IEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2021
29 July 2021
Santosh Thoduka
Juergen Gall
Paul G. Plöger
ArXiv (abs)PDFHTML

Papers citing "Using Visual Anomaly Detection for Task Execution Monitoring"

6 / 6 papers shown
Title
Reliable Robotic Task Execution in the Face of Anomalies
Reliable Robotic Task Execution in the Face of Anomalies
Bharath Santhanam
Alex Mitrevski
Santosh Thoduka
Sebastian Houben
Teena Hassan
36
0
0
27 Oct 2025
Visual Anomaly Detection for Reliable Robotic Implantation of Flexible Microelectrode Array
Visual Anomaly Detection for Reliable Robotic Implantation of Flexible Microelectrode Array
Yitong Chen
Xinyao Xu
Ping Zhu
Xinyong Han
Fangbo Qin
Shan Yu
20
0
0
10 Oct 2025
Anomaly detection for generic failure monitoring in robotic assembly, screwing and manipulation
Anomaly detection for generic failure monitoring in robotic assembly, screwing and manipulation
Niklas Grambow
Lisa-Marie Fenner
Felipe Kempkes
Philip Hotz
Dingyuan Wan
J. Krüger
Kevin Haninger
43
0
0
30 Sep 2025
Enhancing Video-Based Robot Failure Detection Using Task Knowledge
Enhancing Video-Based Robot Failure Detection Using Task KnowledgeEuropean Conference on Mobile Robots (ECMR), 2025
Santosh Thoduka
Sebastian Houben
Juergen Gall
Paul G. Plöger
68
0
0
26 Aug 2025
Multimodal Detection and Identification of Robot Manipulation Failures
Multimodal Detection and Identification of Robot Manipulation Failures
A. Inceoğlu
E. Aksoy
Sanem Sariel
98
3
0
08 May 2023
Unsupervised Anomaly Detection from Time-of-Flight Depth Images
Unsupervised Anomaly Detection from Time-of-Flight Depth Images
Pascal Schneider
J. Rambach
B. Mirbach
D. Stricker
196
8
0
02 Mar 2022
1