Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.14346
Cited By
Neural Networks for Parameter Estimation in Intractable Models
29 July 2021
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Networks for Parameter Estimation in Intractable Models"
19 / 19 papers shown
Title
Fast Likelihood-Free Parameter Estimation for Lévy Processes
Nicolas Coloma
William Kleiber
10
0
0
03 May 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
36
1
0
31 Dec 2024
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
25
9
0
31 Dec 2024
A Generalized Unified Skew-Normal Process with Neural Bayes Inference
Kesen Wang
M. Genton
SyDa
66
0
0
26 Nov 2024
Dimension-reduced Reconstruction Map Learning for Parameter Estimation in Likelihood-Free Inference Problems
Rui Zhang
O. Chkrebtii
Dongbin Xiu
16
0
0
19 Jul 2024
Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation
Ti-Fen Pan
Jing-Jing Li
Bill Thompson
Anne Collins
BDL
29
0
0
20 Jun 2024
A variational neural Bayes framework for inference on intractable posterior distributions
Elliot Maceda
Emily C. Hector
Amanda Lenzi
Brian J. Reich
13
2
0
16 Apr 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
23
14
0
04 Oct 2023
Neural Bayes estimators for censored inference with peaks-over-threshold models
J. Richards
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
17
8
0
27 Jun 2023
Inertial Navigation Meets Deep Learning: A Survey of Current Trends and Future Directions
Nadav Cohen
Itzik Klein
3DGS
16
34
0
22 Jun 2023
Universal Approximation and the Topological Neural Network
M. Kouritzin
Daniel Richard
11
0
0
26 May 2023
Fast parameter estimation of Generalized Extreme Value distribution using Neural Networks
Sweta Rai
Alexis L Hoffman
S. Lahiri
D. Nychka
S. Sain
S. Bandyopadhyay
25
8
0
07 May 2023
Towards black-box parameter estimation
Amanda Lenzi
Haavard Rue
24
4
0
27 Mar 2023
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
9
30
0
27 Aug 2022
Regression modelling of spatiotemporal extreme U.S. wildfires via partially-interpretable neural networks
J. Richards
Raphael Huser
11
11
0
16 Aug 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
11
45
0
05 Jun 2022
Spherical Poisson Point Process Intensity Function Modeling and Estimation with Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
8
3
0
24 Jan 2022
Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning for Reliable Simulator-Based Inference
Niccolò Dalmasso
Luca Masserano
David Y. Zhao
Rafael Izbicki
Ann B. Lee
16
5
0
08 Jul 2021
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
96
180
0
12 Jan 2021
1