ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.02888
  4. Cited By
Out-of-Domain Generalization from a Single Source: An Uncertainty
  Quantification Approach

Out-of-Domain Generalization from a Single Source: An Uncertainty Quantification Approach

5 August 2021
Xi Peng
Fengchun Qiao
Long Zhao
    OOD
ArXivPDFHTML

Papers citing "Out-of-Domain Generalization from a Single Source: An Uncertainty Quantification Approach"

8 / 8 papers shown
Title
Producing Plankton Classifiers that are Robust to Dataset Shift
Producing Plankton Classifiers that are Robust to Dataset Shift
Cheng Chen
S. Kyathanahally
Marta Reyes
Stefanie Merkli
E. Merz
Emanuele Francazi
Marvin Hoege
F. Pomati
M. Baity-Jesi
14
2
0
25 Jan 2024
Are Data-driven Explanations Robust against Out-of-distribution Data?
Are Data-driven Explanations Robust against Out-of-distribution Data?
Tang Li
Fengchun Qiao
Mengmeng Ma
Xiangkai Peng
OODD
OOD
20
10
0
29 Mar 2023
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
43
1,165
0
02 Mar 2021
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
178
271
0
03 Dec 2018
Bayesian Model-Agnostic Meta-Learning
Bayesian Model-Agnostic Meta-Learning
Taesup Kim
Jaesik Yoon
Ousmane Amadou Dia
Sungwoong Kim
Yoshua Bengio
Sungjin Ahn
UQCV
BDL
188
495
0
11 Jun 2018
Probabilistic Model-Agnostic Meta-Learning
Probabilistic Model-Agnostic Meta-Learning
Chelsea Finn
Kelvin Xu
Sergey Levine
BDL
165
664
0
07 Jun 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
240
11,568
0
09 Mar 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1