ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03180
  4. Cited By
Dynamic Semantic Occupancy Mapping using 3D Scene Flow and Closed-Form
  Bayesian Inference

Dynamic Semantic Occupancy Mapping using 3D Scene Flow and Closed-Form Bayesian Inference

6 August 2021
Aishwarya Unnikrishnan
Joey Wilson
Lu Gan
Andrew Capodieci
P. Jayakumar
Kira Barton
Maani Ghaffari
    3DPC
ArXivPDFHTML

Papers citing "Dynamic Semantic Occupancy Mapping using 3D Scene Flow and Closed-Form Bayesian Inference"

4 / 4 papers shown
Title
Multitask Learning for Scalable and Dense Multilayer Bayesian Map
  Inference
Multitask Learning for Scalable and Dense Multilayer Bayesian Map Inference
Lu Gan
Youngji Kim
J. Grizzle
Jeffrey M. Walls
Ayoung Kim
Ryan Eustice
Maani Ghaffari
11
15
0
28 Jun 2021
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
110
183
0
22 Jul 2020
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
Berta Bescós
José M. Fácil
Javier Civera
José Neira
56
836
0
14 Jun 2018
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
13,886
0
02 Dec 2016
1