ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.08273
  4. Cited By
User configurable 3D object regeneration for spatial privacy

User configurable 3D object regeneration for spatial privacy

10 August 2021
Arpit Nama
Amaya Dharmasiri
Kanchana Thilakarathna
Albert Zomaya
Jaybie A. de Guzman
ArXivPDFHTML

Papers citing "User configurable 3D object regeneration for spatial privacy"

3 / 3 papers shown
Title
Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need
Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need
Xianlong Wang
Minghui Li
Wei Liu
Hangtao Zhang
Shengshan Hu
Yechao Zhang
Ziqi Zhou
Hai Jin
3DPC
MU
40
6
0
04 Oct 2024
Hypernetwork approach to generating point clouds
Hypernetwork approach to generating point clouds
P. Spurek
Sebastian Winczowski
Jacek Tabor
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
3DPC
37
34
0
10 Feb 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
1