ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.11068
  4. Cited By
Understanding Longitudinal Dynamics of Recommender Systems with
  Agent-Based Modeling and Simulation

Understanding Longitudinal Dynamics of Recommender Systems with Agent-Based Modeling and Simulation

25 August 2021
G. Adomavicius
Dietmar Jannach
Stephan Leitner
Jingjing Zhang
ArXivPDFHTML

Papers citing "Understanding Longitudinal Dynamics of Recommender Systems with Agent-Based Modeling and Simulation"

6 / 6 papers shown
Title
A Survey on Popularity Bias in Recommender Systems
A Survey on Popularity Bias in Recommender Systems
Anastasiia Klimashevskaia
Dietmar Jannach
Mehdi Elahi
C. Trattner
29
34
0
02 Aug 2023
Assessing the Impact of Music Recommendation Diversity on Listeners: A
  Longitudinal Study
Assessing the Impact of Music Recommendation Diversity on Listeners: A Longitudinal Study
Lorenzo Porcaro
Emilia Gómez
Carlos Castillo
22
6
0
01 Dec 2022
Synthetic Data-Based Simulators for Recommender Systems: A Survey
Synthetic Data-Based Simulators for Recommender Systems: A Survey
Elizaveta Stavinova
A. Grigorievskiy
A. Volodkevich
P. Chunaev
Klavdiya Olegovna Bochenina
D. Bugaychenko
SyDa
26
6
0
22 Jun 2022
Fairness in Recommender Systems: Research Landscape and Future
  Directions
Fairness in Recommender Systems: Research Landscape and Future Directions
Yashar Deldjoo
Dietmar Jannach
Alejandro Bellogín
Alessandro Difonzo
Dario Zanzonelli
OffRL
FaML
94
82
0
23 May 2022
Balancing Consumer and Business Value of Recommender Systems: A
  Simulation-based Analysis
Balancing Consumer and Business Value of Recommender Systems: A Simulation-based Analysis
Nada Ghanem
Stephan Leitner
Dietmar Jannach
14
30
0
10 Mar 2022
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
313
0
30 Oct 2017
1