Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
2108.12515
Cited By
v1
v2
v3 (latest)
Convergence Rates for Learning Linear Operators from Noisy Data
27 August 2021
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convergence Rates for Learning Linear Operators from Noisy Data"
42 / 42 papers shown
Title
Deep Symmetric Autoencoders from the Eckart-Young-Schmidt Perspective
Simone Brivio
Nicola Rares Franco
53
0
0
13 Jun 2025
Learning Where to Learn: Training Distribution Selection for Provable OOD Performance
Nicolas Guerra
Nicholas H. Nelsen
Yunan Yang
OOD
156
0
0
27 May 2025
Operator Learning for Schrödinger Equation: Unitarity, Error Bounds, and Time Generalization
Yash Patel
Unique Subedi
Ambuj Tewari
100
0
0
23 May 2025
Learning Dual-Arm Coordination for Grasping Large Flat Objects
Yongliang Wang
Hamidreza Kasaei
130
0
0
04 Apr 2025
Transfer Learning on Multi-Dimensional Data: A Novel Approach to Neural Network-Based Surrogate Modeling
Adrienne M. Propp
Daniel M. Tartakovsky
AI4CE
113
3
0
16 Oct 2024
Structure-Preserving Operator Learning
Nacime Bouziani
Nicolas Boullé
107
2
0
01 Oct 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
145
16
0
12 Aug 2024
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
134
5
0
04 Aug 2024
On the estimation rate of Bayesian PINN for inverse problems
Yi Sun
Debarghya Mukherjee
Yves Atchadé
PINN
132
1
0
21 Jun 2024
Covariance Operator Estimation via Adaptive Thresholding
Omar Al Ghattas
D. Sanz-Alonso
134
3
0
28 May 2024
Spectral-Refiner: Accurate Fine-Tuning of Spatiotemporal Fourier Neural Operator for Turbulent Flows
Shuhao Cao
Francesco Brarda
Ruipeng Li
Yuanzhe Xi
150
5
0
27 May 2024
MODNO: Multi Operator Learning With Distributed Neural Operators
Zecheng Zhang
200
10
0
03 Apr 2024
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
188
47
0
24 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
97
2
0
01 Feb 2024
Operator learning without the adjoint
Nicolas Boullé
Diana Halikias
Samuel E. Otto
Alex Townsend
65
5
0
31 Jan 2024
Learning a Gaussian Mixture for Sparsity Regularization in Inverse Problems
Giovanni S. Alberti
Luca Ratti
Matteo Santacesaria
Silvia Sciutto
83
1
0
29 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
563
5
0
05 Jan 2024
Operator learning for hyperbolic partial differential equations
Christopher Wang
Alex Townsend
124
4
0
29 Dec 2023
A Mathematical Guide to Operator Learning
Nicolas Boullé
Alex Townsend
129
55
0
22 Dec 2023
Inverse Problems with Learned Forward Operators
Simon Arridge
Andreas Hauptmann
Yury Korolev
114
3
0
21 Nov 2023
Uncertainty quantification for noisy inputs-outputs in physics-informed neural networks and neural operators
Zongren Zou
Xuhui Meng
George Karniadakis
AI4CE
124
33
0
19 Nov 2023
Covariance Operator Estimation: Sparsity, Lengthscale, and Ensemble Kalman Filters
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
113
8
0
25 Oct 2023
Online Infinite-Dimensional Regression: Learning Linear Operators
Vinod Raman
Unique Subedi
Ambuj Tewari
96
1
0
08 Sep 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
139
18
0
26 May 2023
Nonlocality and Nonlinearity Implies Universality in Operator Learning
S. Lanthaler
Zong-Yi Li
Andrew M. Stuart
132
19
0
26 Apr 2023
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
124
21
0
30 Mar 2023
Operator learning with PCA-Net: upper and lower complexity bounds
S. Lanthaler
158
31
0
28 Mar 2023
Elliptic PDE learning is provably data-efficient
N. Boullé
Diana Halikias
Alex Townsend
156
26
0
24 Feb 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
110
15
0
28 Jan 2023
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
199
26
0
27 Jan 2023
A Data-Adaptive Prior for Bayesian Learning of Kernels in Operators
Neil K. Chada
Quanjun Lang
Fei Lu
Xiang Wang
94
3
0
29 Dec 2022
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
146
27
0
16 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
191
113
0
15 Nov 2022
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
143
13
0
28 Sep 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
137
9
0
28 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Yiping Lu
Jose H. Blanchet
Lexing Ying
174
9
0
15 May 2022
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
146
26
0
27 Apr 2022
On the sample complexity of stabilizing linear dynamical systems from data
Steffen W. R. Werner
Benjamin Peherstorfer
69
9
0
28 Feb 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
245
46
0
01 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
90
25
0
14 Dec 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
130
20
0
26 Aug 2021
Learning Dissipative Dynamics in Chaotic Systems
Zong-Yi Li
Miguel Liu-Schiaffini
Nikola B. Kovachki
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
130
35
0
13 Jun 2021
1