ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.13054
  4. Cited By
Wasserstein Generative Adversarial Uncertainty Quantification in
  Physics-Informed Neural Networks

Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks

30 August 2021
Yihang Gao
Michael K. Ng
ArXivPDFHTML

Papers citing "Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks"

10 / 10 papers shown
Title
A local squared Wasserstein-2 method for efficient reconstruction of
  models with uncertainty
A local squared Wasserstein-2 method for efficient reconstruction of models with uncertainty
Mingtao Xia
Qijing Shen
24
1
0
10 Jun 2024
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
60
1
0
10 Oct 2023
Bayesian Physics Informed Neural Networks for Data Assimilation and
  Spatio-Temporal Modelling of Wildfires
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
27
17
0
02 Dec 2022
Partial Differential Equations Meet Deep Neural Networks: A Survey
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
24
17
0
27 Oct 2022
Solving Coupled Differential Equation Groups Using PINO-CDE
Solving Coupled Differential Equation Groups Using PINO-CDE
Wenhao Ding
Qing He
Hanghang Tong
Qingjing Wang
Ping Wang
OOD
AI4CE
27
4
0
01 Oct 2022
Neural Networks Based on Power Method and Inverse Power Method for
  Solving Linear Eigenvalue Problems
Neural Networks Based on Power Method and Inverse Power Method for Solving Linear Eigenvalue Problems
Qihong Yang
Yangtao Deng
Yu Yang
Qiaolin He
Shiquan Zhang
16
13
0
22 Sep 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
A survey of unsupervised learning methods for high-dimensional
  uncertainty quantification in black-box-type problems
A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems
Katiana Kontolati
Dimitrios Loukrezis
D. D. Giovanis
Lohit Vandanapu
Michael D. Shields
25
40
0
09 Feb 2022
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
180
758
0
13 Mar 2020
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
238
3,190
0
30 Oct 2016
1