Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01962
Cited By
Counterfactual Evaluation for Explainable AI
5 September 2021
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Counterfactual Evaluation for Explainable AI"
14 / 14 papers shown
Title
FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation
Qianli Wang
Nils Feldhus
Simon Ostermann
Luis Felipe Villa-Arenas
Sebastian Möller
Vera Schmitt
AAML
34
0
0
01 Jan 2025
SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
Haoran Zheng
Utku Pamuksuz
19
0
0
08 Aug 2024
Explainable bank failure prediction models: Counterfactual explanations to reduce the failure risk
Seyma Gunonu
Gizem Altun
Mustafa Cavus
30
0
0
14 Jul 2024
How Well Do Feature-Additive Explainers Explain Feature-Additive Predictors?
Zachariah Carmichael
Walter J. Scheirer
FAtt
25
4
0
27 Oct 2023
Defending Against Authorship Identification Attacks
Haining Wang
14
1
0
02 Oct 2023
Towards a Comprehensive Human-Centred Evaluation Framework for Explainable AI
Ivania Donoso-Guzmán
Jeroen Ooge
Denis Parra
K. Verbert
29
5
0
31 Jul 2023
EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust and Non-Robust Models
Ian E. Nielsen
Ravichandran Ramachandran
N. Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
AAML
FAtt
38
7
0
15 Mar 2023
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
42
18
0
31 May 2022
Logical Satisfiability of Counterfactuals for Faithful Explanations in NLI
Suzanna Sia
Anton Belyy
Amjad Almahairi
Madian Khabsa
Luke Zettlemoyer
Lambert Mathias
LRM
12
13
0
25 May 2022
Deconfounded Causal Collaborative Filtering
Shuyuan Xu
Juntao Tan
Shelby Heinecke
Jia Li
Yongfeng Zhang
CML
22
40
0
14 Oct 2021
Problem Learning: Towards the Free Will of Machines
Yongfeng Zhang
FaML
15
2
0
01 Sep 2021
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
106
0
20 Oct 2020
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
219
201
0
06 Jul 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1