ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.01962
  4. Cited By
Counterfactual Evaluation for Explainable AI

Counterfactual Evaluation for Explainable AI

5 September 2021
Yingqiang Ge
Shuchang Liu
Zelong Li
Shuyuan Xu
Shijie Geng
Yunqi Li
Juntao Tan
Fei Sun
Yongfeng Zhang
    CML
ArXivPDFHTML

Papers citing "Counterfactual Evaluation for Explainable AI"

14 / 14 papers shown
Title
FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation
FitCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation
Qianli Wang
Nils Feldhus
Simon Ostermann
Luis Felipe Villa-Arenas
Sebastian Möller
Vera Schmitt
AAML
34
0
0
01 Jan 2025
SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
SCENE: Evaluating Explainable AI Techniques Using Soft Counterfactuals
Haoran Zheng
Utku Pamuksuz
19
0
0
08 Aug 2024
Explainable bank failure prediction models: Counterfactual explanations
  to reduce the failure risk
Explainable bank failure prediction models: Counterfactual explanations to reduce the failure risk
Seyma Gunonu
Gizem Altun
Mustafa Cavus
30
0
0
14 Jul 2024
How Well Do Feature-Additive Explainers Explain Feature-Additive
  Predictors?
How Well Do Feature-Additive Explainers Explain Feature-Additive Predictors?
Zachariah Carmichael
Walter J. Scheirer
FAtt
25
4
0
27 Oct 2023
Defending Against Authorship Identification Attacks
Defending Against Authorship Identification Attacks
Haining Wang
14
1
0
02 Oct 2023
Towards a Comprehensive Human-Centred Evaluation Framework for
  Explainable AI
Towards a Comprehensive Human-Centred Evaluation Framework for Explainable AI
Ivania Donoso-Guzmán
Jeroen Ooge
Denis Parra
K. Verbert
29
5
0
31 Jul 2023
EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust
  and Non-Robust Models
EvalAttAI: A Holistic Approach to Evaluating Attribution Maps in Robust and Non-Robust Models
Ian E. Nielsen
Ravichandran Ramachandran
N. Bouaynaya
Hassan M. Fathallah-Shaykh
Ghulam Rasool
AAML
FAtt
38
7
0
15 Mar 2023
Attribution-based Explanations that Provide Recourse Cannot be Robust
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
42
18
0
31 May 2022
Logical Satisfiability of Counterfactuals for Faithful Explanations in
  NLI
Logical Satisfiability of Counterfactuals for Faithful Explanations in NLI
Suzanna Sia
Anton Belyy
Amjad Almahairi
Madian Khabsa
Luke Zettlemoyer
Lambert Mathias
LRM
12
13
0
25 May 2022
Deconfounded Causal Collaborative Filtering
Deconfounded Causal Collaborative Filtering
Shuyuan Xu
Juntao Tan
Shelby Heinecke
Jia Li
Yongfeng Zhang
CML
22
40
0
14 Oct 2021
Problem Learning: Towards the Free Will of Machines
Problem Learning: Towards the Free Will of Machines
Yongfeng Zhang
FaML
15
2
0
01 Sep 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
24
106
0
20 Oct 2020
A causal framework for explaining the predictions of black-box
  sequence-to-sequence models
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
219
201
0
06 Jul 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,672
0
28 Feb 2017
1