ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07143
  4. Cited By
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs

Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs

15 September 2021
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
    AI4CE
ArXivPDFHTML

Papers citing "Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs"

2 / 2 papers shown
Title
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
40
4
0
10 Feb 2023
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
152
161
0
15 Jun 2018
1