ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09721
  4. Cited By
Machine-learning hidden symmetries

Machine-learning hidden symmetries

20 September 2021
Ziming Liu
Max Tegmark
ArXivPDFHTML

Papers citing "Machine-learning hidden symmetries"

27 / 27 papers shown
Title
Do Two AI Scientists Agree?
Do Two AI Scientists Agree?
Xinghong Fu
Ziming Liu
Max Tegmark
29
0
0
03 Apr 2025
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
75
0
0
30 Mar 2025
Deep Learning based discovery of Integrable Systems
Deep Learning based discovery of Integrable Systems
Shailesh Lal
Suvajit Majumder
E. Sobko
38
0
0
13 Mar 2025
Learning finite symmetry groups of dynamical systems via equivariance detection
Pablo Calvo-Barlés
Sergio G. Rodrigo
Luis Martín-Moreno
43
0
0
04 Mar 2025
Learning Infinitesimal Generators of Continuous Symmetries from Data
Learning Infinitesimal Generators of Continuous Symmetries from Data
Gyeonghoon Ko
Hyunsu Kim
Juho Lee
24
1
0
29 Oct 2024
Governing equation discovery of a complex system from snapshots
Governing equation discovery of a complex system from snapshots
Qunxi Zhu
Bolin Zhao
Jingdong Zhang
Peiyang Li
Wei Lin
21
1
0
22 Oct 2024
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
KAN 2.0: Kolmogorov-Arnold Networks Meet Science
Ziming Liu
Pingchuan Ma
Yixuan Wang
Wojciech Matusik
Max Tegmark
37
60
0
19 Aug 2024
Scalable learning of potentials to predict time-dependent Hartree-Fock
  dynamics
Scalable learning of potentials to predict time-dependent Hartree-Fock dynamics
Harish S. Bhat
Prachi Gupta
Christine M Isborn
20
1
0
08 Aug 2024
Symmetry-Informed Governing Equation Discovery
Symmetry-Informed Governing Equation Discovery
Jianke Yang
Wang Rao
Nima Dehmamy
Robin G. Walters
Rose Yu
21
0
0
27 May 2024
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Representation Learning in a Decomposed Encoder Design for Bio-inspired Hebbian Learning
Achref Jaziri
Sina Ditzel
Iuliia Pliushch
Visvanathan Ramesh
SSL
23
1
0
22 Nov 2023
A Bayesian framework for discovering interpretable Lagrangian of
  dynamical systems from data
A Bayesian framework for discovering interpretable Lagrangian of dynamical systems from data
Tapas Tripura
Souvik Chakraborty
23
3
0
10 Oct 2023
Identifying the Group-Theoretic Structure of Machine-Learned Symmetries
Identifying the Group-Theoretic Structure of Machine-Learned Symmetries
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
8
5
0
14 Sep 2023
Accelerated Discovery of Machine-Learned Symmetries: Deriving the
  Exceptional Lie Groups G2, F4 and E6
Accelerated Discovery of Machine-Learned Symmetries: Deriving the Exceptional Lie Groups G2, F4 and E6
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
15
2
0
10 Jul 2023
The R-mAtrIx Net
The R-mAtrIx Net
Shailesh Lal
Suvajit Majumder
E. Sobko
8
5
0
14 Apr 2023
Discovering Sparse Representations of Lie Groups with Machine Learning
Discovering Sparse Representations of Lie Groups with Machine Learning
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
14
9
0
10 Feb 2023
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
14
5
0
02 Feb 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
  from First Principles
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
13
21
0
13 Jan 2023
Metalearning generalizable dynamics from trajectories
Metalearning generalizable dynamics from trajectories
Qiaofeng Li
Tianyi Wang
V. Roychowdhury
M. Jawed
AI4CE
25
10
0
03 Jan 2023
Data Science and Machine Learning in Education
Data Science and Machine Learning in Education
G. Benelli
Thomas Y. Chen
Javier Mauricio Duarte
Matthew Feickert
Matthew Graham
...
K. Terao
S. Thais
A. Roy
J. Vlimant
G. Chachamis
AI4CE
15
5
0
19 Jul 2022
Simplifying Polylogarithms with Machine Learning
Simplifying Polylogarithms with Machine Learning
Aurélien Dersy
M. Schwartz
Xiao-Yan Zhang
AI4CE
13
16
0
08 Jun 2022
Learning Linear Symmetries in Data Using Moment Matching
Learning Linear Symmetries in Data Using Moment Matching
Colin Hagemeyer
17
1
0
04 Apr 2022
Learning Spatiotemporal Chaos Using Next-Generation Reservoir Computing
Learning Spatiotemporal Chaos Using Next-Generation Reservoir Computing
W. A. S. Barbosa
D. Gauthier
17
32
0
24 Mar 2022
AI Poincaré 2.0: Machine Learning Conservation Laws from
  Differential Equations
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
20
27
0
23 Mar 2022
Machine-Learning the Classification of Spacetimes
Machine-Learning the Classification of Spacetimes
Yang-Hui He
J. M. Ipiña
11
4
0
05 Jan 2022
Learn one size to infer all: Exploiting translational symmetries in
  delay-dynamical and spatio-temporal systems using scalable neural networks
Learn one size to infer all: Exploiting translational symmetries in delay-dynamical and spatio-temporal systems using scalable neural networks
Mirko Goldmann
C. Mirasso
Ingo Fischer
Miguel C. Soriano
AI4CE
14
7
0
05 Nov 2021
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed
  Learning
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
29
22
0
28 Sep 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
364
0
10 Mar 2020
1