ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10092
  4. Cited By
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling

Bayesian Confidence Calibration for Epistemic Uncertainty Modelling

21 September 2021
Fabian Küppers
Jan Kronenberger
Jonas Schneider
Anselm Haselhoff
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Bayesian Confidence Calibration for Epistemic Uncertainty Modelling"

8 / 8 papers shown
Title
A Survey of Calibration Process for Black-Box LLMs
A Survey of Calibration Process for Black-Box LLMs
Liangru Xie
Hui Liu
Jingying Zeng
Xianfeng Tang
Yan Han
Chen Luo
Jing Huang
Zhen Li
Suhang Wang
Qi He
74
1
0
17 Dec 2024
Extracting or Guessing? Improving Faithfulness of Event Temporal
  Relation Extraction
Extracting or Guessing? Improving Faithfulness of Event Temporal Relation Extraction
Haoyu Wang
Hongming Zhang
Yuqian Deng
J. Gardner
Dan Roth
Muhao Chen
22
19
0
10 Oct 2022
Cold Posteriors through PAC-Bayes
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
21
5
0
22 Jun 2022
Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
  Variable Model
Dense Uncertainty Estimation via an Ensemble-based Conditional Latent Variable Model
Jing Zhang
Yuchao Dai
Mehrtash Harandi
Yiran Zhong
Nick Barnes
Richard I. Hartley
UQCV
16
1
0
22 Nov 2021
Automatic Diagnosis of COVID-19 from CT Images using CycleGAN and
  Transfer Learning
Automatic Diagnosis of COVID-19 from CT Images using CycleGAN and Transfer Learning
Navid Ghassemi
A. Shoeibi
Marjane Khodatars
Jónathan Heras
Alireza Rahimi
A. Zare
R. B. Pachori
Juan M Gorriz
MedIm
35
56
0
24 Apr 2021
Probabilistic Spatial Transformer Networks
Probabilistic Spatial Transformer Networks
Pola Schwobel
Frederik Warburg
Martin Jørgensen
Kristoffer Hougaard Madsen
Søren Hauberg
29
8
0
07 Apr 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
252
9,134
0
06 Jun 2015
1