Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.11495
Cited By
DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications
23 September 2021
Dongqi Han
Zhiliang Wang
Wenqi Chen
Ying Zhong
Su Wang
Han Zhang
Jiahai Yang
Xingang Shi
Xia Yin
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications"
14 / 14 papers shown
Title
UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
Binghui Wu
D. Divakaran
M. Gurusamy
57
0
0
06 Mar 2025
A Comparative Analysis of DNN-based White-Box Explainable AI Methods in Network Security
Osvaldo Arreche
Mustafa Abdallah
AAML
36
1
0
14 Jan 2025
Visually Analyze SHAP Plots to Diagnose Misclassifications in ML-based Intrusion Detection
Maraz Mia
Mir Mehedi Ahsan Pritom
Tariqul Islam
Kamrul Hasan
AAML
24
0
0
04 Nov 2024
XG-NID: Dual-Modality Network Intrusion Detection using a Heterogeneous Graph Neural Network and Large Language Model
Yasir Ali Farrukh
S. Wali
I. Khan
Nathaniel D. Bastian
97
2
0
27 Aug 2024
AnoGAN for Tabular Data: A Novel Approach to Anomaly Detection
Aditya Singh
Pavan Reddy
30
1
0
05 May 2024
AI for DevSecOps: A Landscape and Future Opportunities
Michael Fu
Jirat Pasuksmit
C. Tantithamthavorn
33
6
0
07 Apr 2024
Genos: General In-Network Unsupervised Intrusion Detection by Rule Extraction
Ruoyu Li
Qing Li
Yu Zhang
Dan Zhao
Xi Xiao
Yong-jia Jiang
18
3
0
28 Mar 2024
HuntGPT: Integrating Machine Learning-Based Anomaly Detection and Explainable AI with Large Language Models (LLMs)
Tarek Ali
Panos Kostakos
22
39
0
27 Sep 2023
FINER: Enhancing State-of-the-art Classifiers with Feature Attribution to Facilitate Security Analysis
Yiling He
Jian Lou
Zhan Qin
Kui Ren
FAtt
AAML
23
7
0
10 Aug 2023
Kairos: Practical Intrusion Detection and Investigation using Whole-system Provenance
Zijun Cheng
Qiujian Lv
Jinyuan Liang
Yan Wang
Degang Sun
Thomas Pasquier
Xueyuan Han
17
33
0
09 Aug 2023
SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection
Giovanni Apruzzese
P. Laskov
J. Schneider
28
24
0
30 Apr 2023
SoK: Modeling Explainability in Security Analytics for Interpretability, Trustworthiness, and Usability
Dipkamal Bhusal
Rosalyn Shin
Ajay Ashok Shewale
M. K. Veerabhadran
Michael Clifford
Sara Rampazzi
Nidhi Rastogi
FAtt
AAML
32
5
0
31 Oct 2022
SoK: Explainable Machine Learning for Computer Security Applications
A. Nadeem
D. Vos
Clinton Cao
Luca Pajola
Simon Dieck
Robert Baumgartner
S. Verwer
25
40
0
22 Aug 2022
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,233
0
24 Jun 2017
1