ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11926
  4. Cited By
Sinkhorn Distributionally Robust Optimization

Sinkhorn Distributionally Robust Optimization

24 September 2021
Jie Wang
Rui Gao
Yao Xie
ArXivPDFHTML

Papers citing "Sinkhorn Distributionally Robust Optimization"

24 / 24 papers shown
Title
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Y. Yang
Yi Zhou
Zhaosong Lu
37
0
0
29 Mar 2025
A stochastic smoothing framework for nonconvex-nonconcave min-sum-max problems with applications to Wasserstein distributionally robust optimization
A stochastic smoothing framework for nonconvex-nonconcave min-sum-max problems with applications to Wasserstein distributionally robust optimization
Wei Liu
Muhammad Khan
Gabriel Mancino-Ball
Yangyang Xu
32
0
0
24 Feb 2025
$\texttt{skwdro}$: a library for Wasserstein distributionally robust
  machine learning
skwdro\texttt{skwdro}skwdro: a library for Wasserstein distributionally robust machine learning
Florian Vincent
Waïss Azizian
F. Iutzeler
J. Malick
OOD
48
0
0
28 Oct 2024
Evaluating Model Performance Under Worst-case Subpopulations
Evaluating Model Performance Under Worst-case Subpopulations
Mike Li
Hongseok Namkoong
Shangzhou Xia
35
17
0
01 Jul 2024
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
33
0
0
24 May 2024
Large-Scale Non-convex Stochastic Constrained Distributionally Robust
  Optimization
Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization
Qi Zhang
Yi Zhou
Ashley Prater-Bennette
Lixin Shen
Shaofeng Zou
37
3
0
01 Apr 2024
Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets
Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets
Jie Wang
Rui Gao
Yao Xie
32
1
0
21 Mar 2024
Unveiling the Potential of Robustness in Evaluating Causal Inference
  Models
Unveiling the Potential of Robustness in Evaluating Causal Inference Models
Yiyan Huang
Cheuk Hang Leung
Siyi Wang
Yijun Li
Qi Wu
OOD
CML
24
0
0
28 Feb 2024
Flow-based Distributionally Robust Optimization
Flow-based Distributionally Robust Optimization
Chen Xu
Jonghyeok Lee
Xiuyuan Cheng
Yao Xie
OOD
24
4
0
30 Oct 2023
Contextual Stochastic Bilevel Optimization
Contextual Stochastic Bilevel Optimization
Yifan Hu
Jie Wang
Yao Xie
Andreas Krause
Daniel Kuhn
24
11
0
27 Oct 2023
Wasserstein Distributionally Robust Policy Evaluation and Learning for
  Contextual Bandits
Wasserstein Distributionally Robust Policy Evaluation and Learning for Contextual Bandits
Yi Shen
Pan Xu
Michael M. Zavlanos
OffRL
26
5
0
15 Sep 2023
Unifying Distributionally Robust Optimization via Optimal Transport
  Theory
Unifying Distributionally Robust Optimization via Optimal Transport Theory
Jose H. Blanchet
Daniel Kuhn
Jiajin Li
Bahar Taşkesen
OT
16
11
0
10 Aug 2023
Provably Convergent Policy Optimization via Metric-aware Trust Region
  Methods
Provably Convergent Policy Optimization via Metric-aware Trust Region Methods
Jun Song
Niao He
Lijun Ding
Chaoyue Zhao
15
3
0
25 Jun 2023
End-to-End Learning for Stochastic Optimization: A Bayesian Perspective
End-to-End Learning for Stochastic Optimization: A Bayesian Perspective
Yves Rychener
Daniel Kuhn
Tobias Sutter
OOD
BDL
17
10
0
07 Jun 2023
Nonlinear Distributionally Robust Optimization
Nonlinear Distributionally Robust Optimization
Mohammed Rayyan Sheriff
Peyman Mohajerin Esfahani
21
2
0
05 Jun 2023
Exact Generalization Guarantees for (Regularized) Wasserstein
  Distributionally Robust Models
Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models
Waïss Azizian
F. Iutzeler
J. Malick
OOD
23
7
0
26 May 2023
A Guide Through the Zoo of Biased SGD
A Guide Through the Zoo of Biased SGD
Yury Demidovich
Grigory Malinovsky
Igor Sokolov
Peter Richtárik
23
22
0
25 May 2023
Stochastic Approximation Approaches to Group Distributionally Robust
  Optimization
Stochastic Approximation Approaches to Group Distributionally Robust Optimization
Lijun Zhang
Peng Zhao
Zhen-Hua Zhuang
Tianbao Yang
Zhihong Zhou
23
6
0
18 Feb 2023
Variable Selection for Kernel Two-Sample Tests
Variable Selection for Kernel Two-Sample Tests
Jie Wang
Santanu S. Dey
Yao Xie
20
4
0
15 Feb 2023
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Stochastic Constrained DRO with a Complexity Independent of Sample Size
Q. Qi
Jiameng Lyu
Kung-Sik Chan
E. Bai
Tianbao Yang
50
14
0
11 Oct 2022
Tikhonov Regularization is Optimal Transport Robust under Martingale
  Constraints
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints
Jiajin Li
Si-Jian Lin
Jose H. Blanchet
Viet Anh Nguyen
OOD
31
11
0
04 Oct 2022
Holistic Robust Data-Driven Decisions
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
25
21
0
19 Jul 2022
Wasserstein Distributionally Robust Optimization with Wasserstein
  Barycenters
Wasserstein Distributionally Robust Optimization with Wasserstein Barycenters
Tim Tsz-Kit Lau
Han Liu
OOD
19
2
0
23 Mar 2022
A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn
  Uncertainty Sets
A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn Uncertainty Sets
Jie Wang
Yao Xie
22
15
0
09 Feb 2022
1