ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12480
  4. Cited By
Explainability Pitfalls: Beyond Dark Patterns in Explainable AI

Explainability Pitfalls: Beyond Dark Patterns in Explainable AI

26 September 2021
Upol Ehsan
Mark O. Riedl
    XAI
    SILM
ArXivPDFHTML

Papers citing "Explainability Pitfalls: Beyond Dark Patterns in Explainable AI"

7 / 7 papers shown
Title
User-centric evaluation of explainability of AI with and for humans: a
  comprehensive empirical study
User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study
Szymon Bobek
Paloma Korycińska
Monika Krakowska
Maciej Mozolewski
Dorota Rak
Magdalena Zych
Magdalena Wójcik
Grzegorz J. Nalepa
ELM
21
1
0
21 Oct 2024
The European Commitment to Human-Centered Technology: The Integral Role
  of HCI in the EU AI Act's Success
The European Commitment to Human-Centered Technology: The Integral Role of HCI in the EU AI Act's Success
André Calero Valdez
Moreen Heine
Thomas Franke
Nicole Jochems
Hans-Christian Jetter
Tim Schrills
16
0
0
22 Feb 2024
The Participatory Turn in AI Design: Theoretical Foundations and the
  Current State of Practice
The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice
Fernando Delgado
Stephen Yang
Michael A. Madaio
Qian Yang
56
98
0
02 Oct 2023
Explainability in reinforcement learning: perspective and position
Explainability in reinforcement learning: perspective and position
Agneza Krajna
Mario Brčič
T. Lipić
Juraj Dončević
16
26
0
22 Mar 2022
Undoing Seamlessness: Exploring Seams for Critical Visualization
Undoing Seamlessness: Exploring Seams for Critical Visualization
N. Hengesbach
8
8
0
04 Mar 2022
How to Support Users in Understanding Intelligent Systems? Structuring
  the Discussion
How to Support Users in Understanding Intelligent Systems? Structuring the Discussion
Malin Eiband
Daniel Buschek
H. Hussmann
26
24
0
22 Jan 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
286
4,143
0
23 Aug 2019
1