ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13337
  4. Cited By
DEBOSH: Deep Bayesian Shape Optimization

DEBOSH: Deep Bayesian Shape Optimization

28 September 2021
N. Durasov
Artem Lukoyanov
Jonathan Donier
Pascal Fua
    UQCV
    AI4CE
ArXivPDFHTML

Papers citing "DEBOSH: Deep Bayesian Shape Optimization"

7 / 7 papers shown
Title
Geometry-Informed Neural Operator for Large-Scale 3D PDEs
Geometry-Informed Neural Operator for Large-Scale 3D PDEs
Zong-Yi Li
Nikola B. Kovachki
Chris Choy
Boyi Li
Jean Kossaifi
...
M. A. Nabian
Maximilian Stadler
Christian Hundt
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
23
127
0
01 Sep 2023
Drag-guided diffusion models for vehicle image generation
Drag-guided diffusion models for vehicle image generation
Nikos Arechiga
Frank Permenter
Binyang Song
Chenyang Yuan
DiffM
29
12
0
16 Jun 2023
Image-based Artificial Intelligence empowered surrogate model and shape
  morpher for real-time blank shape optimisation in the hot stamping process
Image-based Artificial Intelligence empowered surrogate model and shape morpher for real-time blank shape optimisation in the hot stamping process
Hao Zhou
Nan Li
AI4CE
29
1
0
01 Dec 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
N. Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
10
10
0
21 Nov 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,809
0
25 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1