ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13620
  4. Cited By
Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking

Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking

28 September 2021
Nikita Moghe
Mark Steedman
Alexandra Birch
ArXivPDFHTML

Papers citing "Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking"

4 / 4 papers shown
Title
MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
  Natural Language Understanding in Task-Oriented Dialogue
MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue
Nikita Moghe
E. Razumovskaia
Liane Guillou
Ivan Vulić
Anna Korhonen
Alexandra Birch
19
13
0
20 Dec 2022
Improving In-Context Few-Shot Learning via Self-Supervised Training
Improving In-Context Few-Shot Learning via Self-Supervised Training
Mingda Chen
Jingfei Du
Ramakanth Pasunuru
Todor Mihaylov
Srini Iyer
Ves Stoyanov
Zornitsa Kozareva
SSL
AI4MH
24
63
0
03 May 2022
XQA-DST: Multi-Domain and Multi-Lingual Dialogue State Tracking
XQA-DST: Multi-Domain and Multi-Lingual Dialogue State Tracking
Han Zhou
Ignacio Iacobacci
Pasquale Minervini
15
2
0
12 Apr 2022
Pre-trained Models for Natural Language Processing: A Survey
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
235
1,444
0
18 Mar 2020
1