Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.13620
Cited By
Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking
28 September 2021
Nikita Moghe
Mark Steedman
Alexandra Birch
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking"
4 / 4 papers shown
Title
MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue
Nikita Moghe
E. Razumovskaia
Liane Guillou
Ivan Vulić
Anna Korhonen
Alexandra Birch
19
13
0
20 Dec 2022
Improving In-Context Few-Shot Learning via Self-Supervised Training
Mingda Chen
Jingfei Du
Ramakanth Pasunuru
Todor Mihaylov
Srini Iyer
Ves Stoyanov
Zornitsa Kozareva
SSL
AI4MH
24
63
0
03 May 2022
XQA-DST: Multi-Domain and Multi-Lingual Dialogue State Tracking
Han Zhou
Ignacio Iacobacci
Pasquale Minervini
15
2
0
12 Apr 2022
Pre-trained Models for Natural Language Processing: A Survey
Xipeng Qiu
Tianxiang Sun
Yige Xu
Yunfan Shao
Ning Dai
Xuanjing Huang
LM&MA
VLM
235
1,444
0
18 Mar 2020
1