Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.14818
Cited By
Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation
30 September 2021
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation"
4 / 4 papers shown
Title
Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
3DPC
30
2
0
19 May 2022
Exploiting Shared Knowledge from Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation
Yichi Zhang
Qingcheng Liao
Lin Yuan
He Zhu
Jiezhen Xing
Jicong Zhang
44
23
0
31 Dec 2020
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,196
0
16 Nov 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
432
15,595
0
02 Nov 2015
1