ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14818
  4. Cited By
Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's
  Semantic Segmentation

Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation

30 September 2021
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
ArXivPDFHTML

Papers citing "Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation"

4 / 4 papers shown
Title
Light In The Black: An Evaluation of Data Augmentation Techniques for
  COVID-19 CT's Semantic Segmentation
Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
3DPC
30
2
0
19 May 2022
Exploiting Shared Knowledge from Non-COVID Lesions for
  Annotation-Efficient COVID-19 CT Lung Infection Segmentation
Exploiting Shared Knowledge from Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation
Yichi Zhang
Qingcheng Liao
Lin Yuan
He Zhu
Jiezhen Xing
Jicong Zhang
44
23
0
31 Dec 2020
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,196
0
16 Nov 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
432
15,595
0
02 Nov 2015
1