ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.01593
  4. Cited By
Generalized Kernel Thinning

Generalized Kernel Thinning

4 October 2021
Raaz Dwivedi
Lester W. Mackey
ArXivPDFHTML

Papers citing "Generalized Kernel Thinning"

24 / 24 papers shown
Title
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
53
0
0
01 Apr 2025
Low-Rank Thinning
Low-Rank Thinning
Annabelle Michael Carrell
Albert Gong
Abhishek Shetty
Raaz Dwivedi
Lester W. Mackey
53
0
0
17 Feb 2025
Supervised Kernel Thinning
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
11
0
0
17 Oct 2024
Learning Counterfactual Distributions via Kernel Nearest Neighbors
Learning Counterfactual Distributions via Kernel Nearest Neighbors
Kyuseong Choi
Jacob Feitelberg
Anish Agarwal
Raaz Dwivedi
OOD
OffRL
24
0
0
17 Oct 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
31
3
0
26 Jun 2024
Submodular Framework for Structured-Sparse Optimal Transport
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
46
0
0
07 Jun 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization
  via Probabilistic Lifting
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
17
3
0
18 Apr 2024
Resource-Aware Collaborative Monte Carlo Localization with Distribution
  Compression
Resource-Aware Collaborative Monte Carlo Localization with Distribution Compression
Nicky Zimmerman
Alessandro Giusti
Jérôme Guzzi
16
1
0
02 Apr 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via
  Leverage Scores Sampling
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
E. De Vito
Lorenzo Rosasco
6
3
0
22 Nov 2023
Policy Gradient with Kernel Quadrature
Policy Gradient with Kernel Quadrature
Satoshi Hayakawa
Tetsuro Morimura
OffRL
BDL
8
0
0
23 Oct 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics
  Approach
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
10
4
0
09 Jun 2023
Kernel quadrature with randomly pivoted Cholesky
Kernel quadrature with randomly pivoted Cholesky
Ethan N. Epperly
Elvira Moreno
11
8
0
06 Jun 2023
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev
  Embedding and Minimax Optimality
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality
Jose H. Blanchet
Haoxuan Chen
Yiping Lu
Lexing Ying
20
3
0
25 May 2023
Stein $Π$-Importance Sampling
Stein ΠΠΠ-Importance Sampling
Congye Wang
Ye Chen
Heishiro Kanagawa
Chris J. Oates
24
2
0
17 May 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
14
7
0
05 May 2023
Coordinating Distributed Example Orders for Provably Accelerated
  Training
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
Wentao Guo
Khiem Pham
Tiancheng Yuan
Charlie F. Ruan
Yucheng Lu
Chris De Sa
24
5
0
02 Feb 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Sampling-based Nyström Approximation and Kernel Quadrature
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
8
13
0
23 Jan 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
28
9
0
14 Jan 2023
Online Kernel CUSUM for Change-Point Detection
Online Kernel CUSUM for Change-Point Detection
S. Wei
Yao Xie
6
11
0
28 Nov 2022
Distribution Compression in Near-linear Time
Distribution Compression in Near-linear Time
Abhishek Shetty
Raaz Dwivedi
Lester W. Mackey
8
14
0
15 Nov 2021
Positively Weighted Kernel Quadrature via Subsampling
Positively Weighted Kernel Quadrature via Subsampling
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
17
23
0
20 Jul 2021
Kernel Thinning
Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
13
29
0
12 May 2021
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
72
204
0
06 Mar 2017
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
86
324
0
09 Feb 2016
1