Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.01593
Cited By
Generalized Kernel Thinning
4 October 2021
Raaz Dwivedi
Lester W. Mackey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalized Kernel Thinning"
24 / 24 papers shown
Title
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
53
0
0
01 Apr 2025
Low-Rank Thinning
Annabelle Michael Carrell
Albert Gong
Abhishek Shetty
Raaz Dwivedi
Lester W. Mackey
53
0
0
17 Feb 2025
Supervised Kernel Thinning
Albert Gong
Kyuseong Choi
Raaz Dwivedi
11
0
0
17 Oct 2024
Learning Counterfactual Distributions via Kernel Nearest Neighbors
Kyuseong Choi
Jacob Feitelberg
Anish Agarwal
Raaz Dwivedi
OOD
OffRL
24
0
0
17 Oct 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
31
3
0
26 Jun 2024
Submodular Framework for Structured-Sparse Optimal Transport
Piyushi Manupriya
Pratik Jawanpuria
Karthik S. Gurumoorthy
SakethaNath Jagarlapudi
Bamdev Mishra
OT
46
0
0
07 Jun 2024
A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Saad Hamid
Harald Oberhauser
Michael A. Osborne
GP
17
3
0
18 Apr 2024
Resource-Aware Collaborative Monte Carlo Localization with Distribution Compression
Nicky Zimmerman
Alessandro Giusti
Jérôme Guzzi
16
1
0
02 Apr 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
E. De Vito
Lorenzo Rosasco
6
3
0
22 Nov 2023
Policy Gradient with Kernel Quadrature
Satoshi Hayakawa
Tetsuro Morimura
OffRL
BDL
8
0
0
23 Oct 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
10
4
0
09 Jun 2023
Kernel quadrature with randomly pivoted Cholesky
Ethan N. Epperly
Elvira Moreno
11
8
0
06 Jun 2023
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality
Jose H. Blanchet
Haoxuan Chen
Yiping Lu
Lexing Ying
20
3
0
25 May 2023
Stein
Π
Π
Π
-Importance Sampling
Congye Wang
Ye Chen
Heishiro Kanagawa
Chris J. Oates
24
2
0
17 May 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
14
7
0
05 May 2023
Coordinating Distributed Example Orders for Provably Accelerated Training
A. Feder Cooper
Wentao Guo
Khiem Pham
Tiancheng Yuan
Charlie F. Ruan
Yucheng Lu
Chris De Sa
24
5
0
02 Feb 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
8
13
0
23 Jan 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
28
9
0
14 Jan 2023
Online Kernel CUSUM for Change-Point Detection
S. Wei
Yao Xie
6
11
0
28 Nov 2022
Distribution Compression in Near-linear Time
Abhishek Shetty
Raaz Dwivedi
Lester W. Mackey
8
14
0
15 Nov 2021
Positively Weighted Kernel Quadrature via Subsampling
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
17
23
0
20 Jul 2021
Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
13
29
0
12 May 2021
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
72
204
0
06 Mar 2017
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
86
324
0
09 Feb 2016
1